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Abstract 
 
This report tries to establish the relationship between the probabilistic models of population 
projection and the Bootstrap. The research question was ‘Can the approximation of the 
probabilistic population projection models be viewed as an application of the Bootstrap? If yes, 
which simplifications or adjustments are made?’. The research objective was to get insight into 
whether the approximation of the probabilistic population projection models could be viewed as 
an application of the Bootstrap, and if that is the case which simplifications or adjustments were 
made. To answer the research question the probabilistic models of population forecasting were 
thoroughly described as explained in the literature. Four categories of these models were 
discussed; Ex-post analysis, aggregate time series, expert judgment, and stochastic modelling. 
RESULTS: one probabilistic model of population projection was found to implement the 
Bootstrap directly. Three probabilistic models of population projection were found to apply 
methods that bear similarity to the Bootstrap, making major simplifications in the process. 
CONCLUSIONS: there is very limited application of the Bootstrap in the probabilistic models of 
population forecasting. There are, however, possibilities for implementing the Bootstrap in the 
existing and future probabilistic models of population forecasting.  
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Glossary of symbols 
 

)(tΡ   Population at time t  

θ   Parameter 
∧
θ   Estimator  

)(m
∧
θ   Bootstrap replication of 

∧
θ  

Μ   Number of Bootstrap samples/number of simulations 
∧
F   Empirical distribution  

)(
∧∧
θSE   Bootstrap standard error 

l   Last age group 
),( tjΡ   Population age j  at time t  

)( js   Probability of survival from age j  to age 1+j  

)( jf   Fertility rate age j  

JO   Jump off 
)(tW   Total population at time t  

),( tjm   Age-specific mortality rate 

NI   Net immigration 
)(tq   Age-structure 

λ   Growth rate/eigenvalue  
),( tjn   Net maternity function 

)(tΒ   Number of births 

)0(JoΨ  Covariance matrix of jump-off populations  

),( utΨ  Covariance matrix of populations at time t and time u  

),( utftΨ  Covariance matrix of fertility rates at time t and time u  

),( utsvΨ  Covariance matrix of survival rates at time t and time u  

),,,( utjiσ  Elements of ),( utΨ  

),,,( utjiftσ  Elements of ),( utftΨ  

),,,( utjisvσ  Elements of ),( utsvΨ  

JOε   Error term jump-off population 

svε   Error term survival rate 

ftε   Error term fertility rate 

mgε   Error term migration rate 
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1 Introduction 
 

1.1 Introduction 
 
Estimates of future population are called population forecasts or projections. (The words forecast 
and projection will be used synonymously in this paper. The use of the word projection, however, 
emphasizes the uncertainty of the assumptions made for the calculations (Alho and Spencer 
1985).) Population forecasts are needed for many purposes including assessment of future 
environmental pressures, planning for manpower, education, and pension systems (Lee and 
Tuljapurkar 1994). 
Traditionally, population forecasts are done using the cohort-component approach as described in 
Alho (1997). First, separate forecasts for the age-specific vital rates (fertility, mortality, and 
migration) are made. Second, letting )(tΡ  be the population at time t , these rates are applied 
successively to the jump-off population (the last time when data are available) through the 
bookkeeping equation 
 

)1( +Ρ t = )(tΡ  + births – deaths + in migration – out migration 
 
The method is called cohort-component because the calculations are made by birth cohort. 
According to Alho (1997) Whelpton specified target values for each vital rate at some future year, 
and used smooth curves to connect the jump-off values to the targets. This model can be 
expressed in a matrix form (see section 3.2). 
The traditional way of handling uncertainty in population forecasts is the variants method dating 
back to Whelpton (Alho 1997). Whelpton dealt with the uncertainty of population forecasts by 
preparing three alternate forecast variants for mortality and fertility to cover future paths of 
development. This was done by conducting empirical analysis of cause-specific mortality and 
studying past trends in fertility in the United States and elsewhere. This procedure was 
complemented by detailed reasoning about the likelihood of future changes in the vital rates 
patterns. Whelpton’s method is still the base of most official population forecasts nowadays 
(Alho 1997). Each variant is prepared using a scenario; a set of assumptions containing an 
assumed trajectory for fertility, another for mortality, and a third one for migration (Lee 1998). 
The United States Bureau of the Census applies the variants method by developing low (high) 
forecasts for each population subgroup by assuming that fertility, life expectancy, and 
immigration are low (high) (Alho and Spencer 1991). 
There are many problems associated with the variants method (see e.g. Ahlburg and Lutz 1998, 
Alho and Spencer 1991, Lee 1998, Lee 1992, Lee 2003 for detailed discussion of the 
shortcomings), but here a selection is made. First, the choice of variants is arbitrary. Second, no 
probabilities can be attached to the high-low range of the projections. Third, the assumption of 
perfect correlation between forecasting errors of fertility and those of mortality (always high, 
medium, or low), along with the assumption that errors in fertility and mortality are perfectly 
correlated with one another are troublesome. Fourth, traditional methods are unable to convey 
uncertainty to dependency ratios; high fertility results in high denominator and low mortality in 
high numerator giving a too narrow interval. Fifth, the given variants’ coverage is 
probabilistically inconsistent; e.g. a 95 percent probability for population size can not cover 95 
percent probability for fertility since different fertility trajectories could lead to the same 
population size. Finally, the high-low trajectories ignore the fact that the demographic rates 
fluctuate or reverse trend (This fluctuation can be integrated in scenarios, however.). 
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These shortcomings of the variants methods led to attempts to develop probabilistic models for 
population projection (attaching probability distributions to population forecasts). According to 
Alho and Spencer (1991) and Alho (1997) the first probabilistic contribution to the assessment of 
error in demographic forecasts was made by Tornqvist in 1949. Since then there have many 
contributions to assess uncertainty in population forecasts (for an overview see e.g. Land 1986, 
Lee and Tuljapurkar 1994, Lee 1998, and Tuljapurkar et al. 2004). The probabilistic models for 
population forecasts can be divided into four categories (Lee 1998); ex-post evaluation, analysing 
amount of variability in past demographic time series, expert judgment, and stochastic modelling. 
This report tries to establish the link between the probabilistic models for population forecasting 
and the Bootstrap. The Bootstrap is a computer based statistical technique developed by Bradley 
Efron in 1979 to estimate the standard error of an estimate. It differs from the conventional 
methods in that no assumptions about the underlying distribution are needed. It is, however, an ad 
hoc method applicable only to the data set in question. 
 

1.2 Research question and Research objective 
 
This section states the research question and the research objective. The research question is ‘Can 
the approximation of the probabilistic population projection models be viewed as an application 
of the Bootstrap? If yes, which simplifications or adjustments are made?’. The research objective 
is to get insight into whether the approximation of the probabilistic population projection models 
can be viewed as an application of the Bootstrap, and if that is the case which simplifications or 
adjustments are made. 
 

1.3 Report outline  
 
The report goes as follows. Chapter two discusses the Bootstrap. Data and methods are discussed 
in chapter three. Chapter four includes the results and findings, and chapter five the conclusions. 
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2 Theoretical Background  
 

2.1 Introduction to the Bootstrap 
 
The Bootstrap is one of the re-sampling techniques. These are procedures that resample from the 
original data set. Other re-sampling techniques are the Jackknife, permutation methods, and cross 
validation. 
The Bootstrap has different applications. One application is the estimation of standard error. 
Another is making confidence intervals. The Bootstrap is also applied in regression analysis. 
Another area of application is time series analysis. The Bootstrap can also be used in density 
estimation. 
 

2.2 The Bootstrap estimate of standard error and Bias 
 
One of the main applications of the Bootstrap is the estimation of standard error of an estimate of 
a parameter. Given a sample of size n from independent identically distributed (i.i.d.) random 

variables, the Bootstrap uses the empirical distribution 
∧
F  to assess an estimate 

∧
θ  of the 

population parameter θ . The empirical distribution 
∧
F  assigns probability 

n

1
 to each of the n  

outcomes of the sample in question.  
To introduce the symbols used consider the following example. An example of an estimate for a 

parameter is the sample mean Χ  for the population mean µ , so that 
∧
θ  is Χ  and θ  is µ . First, 

the sample mean is calculated from the original sample. Second, Μ  independent Bootstrap 
samples, 1b , 2b , ..., Mb , each of size n , are drawn with replacement from the original sample. 
Calculation of the sample mean from each Bootstrap sample m  produces the Bootstrap 

replication of 
∧
θ , given by )(m

∧
θ ; in this example )(m

∧
θ  is the mean of Bootstrap sample m . The 

standard deviation of the Bootstrap replications )(
∧∧
θSE  is used as an estimate for the standard 

error of the original estimate 
∧
θ , the mean of the original sample. The standard error of the 

Bootstrap replicate )(m
∧
θ  is denoted by ))(( mSE

∧∧
θ , which in this example will be given by 

n

ms )(
, where )(ms  is the standard deviation of the Bootstrap sample m . 

To estimate the standard error the following algorithm is applied. First, Μ  independent 
Bootstrap samples, 1b , 2b , ..., Mb , each of size n, are drawn with replacement from the original 

sample. Second, for each Bootstrap sample mb , Μ= ,...,1m , the Bootstrap replication of 
∧
θ  is 

calculated. Finally, the standard deviation of the Μ  replications of 
∧
θ  is used as an estimate for 

the standard error of 
∧
θ . In other words, the standard error is estimated by 
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   )(
∧∧
θSE )1/((.))(

1

2

−Μ





 −=∑

Μ

=

∧

m

m θθ , 

 

with )(m
∧
θ referring to the calculation of the estimate 

∧
θ  from the Bootstrap sample m , and 

Μ=∑
Μ

=

∧
/)((.)

1

m
m

θθ . 

The Bootstrap can also be used to estimate the bias (The bias is defined as the difference between 
the parameter and the expected value of the estimate.). The Bootstrap estimate of the bias is given 
by 
 

     
∧

−= θθ (.) Bias Bootstrap  
 

The estimated bias can be used to correct 
∧
θ . The corrected (less biased) 

∧
θ  is given by: 

 

    
∧
θ corrected  = 

∧
θ  - Bootstrap Bias 

 
Efron and Tibshirani (1993) suggest rules of thumb based on experience to determine the number 
of Bootstrap samples needed. A good estimate of the standard error of the estimate is achieved by 
using 50 Bootstrap samples. In seldom cases more than 200 Bootstrap samples are needed. 
 

2.3 The Bootstrap confidence intervals 
 
The Bootstrap can be used to create confidence intervals by creating Bootstrap tables. These 
tables are used instead of conventional tables (e.g. normal distribution table, t-distribution table). 
The Bootstrap tables relieve the user from making assumptions about the underlying distribution. 
They are, unlike conventional tables however, only applicable to the given sample. 
Three types of Bootstrap confidence intervals will be considered here. First, the Bootstrap-t 
interval will be described. Second, the percentile based Bootstrap intervals will be discussed. 
Third, the Bootstrap BC a  interval will be viewed. 

 

2.3.1 Bootstrap-t interval 
 
A generalization of the usual Student’s t method is the Bootstrap-t procedure. It is particularly 
applicable to location statistics like the sample mean, but can not be trusted for more general 
problems. 
The Bootstrap-t interval is created as follows. First, from the Μ  Bootstrap samples 1b , ..., Mb , 

Μ= ,...,1m , the statistic )(mο  is calculated by 
 

    













 −=

∧∧∧
)(/)()( mSEmm θθθο , 
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with 





 ∧ )(mSE θ  is an estimated standard error of )(m

∧
θ  for the Bootstrap sample m 

( 





 ∧ )(mSE θ  is the standard error of each Bootstrap estimate )(m

∧
θ . For example, if the estimate 

is the sample mean, then )(m
∧
θ  will be the mean calculated from each Bootstrap sample m . For 

each Bootstrap sample 





 ∧ )(mSE θ  will be given by 

n

ms )(
, where )(ms  is the standard deviation 

of the Bootstrap sample m . ). Second, )(α
∧
t  is determined so that  

 

    ααο =Μ






 ≤

∧
/)()(# tm , 

 

i.e. )(α
∧
t  is determined so that is the number of )(mο ’s  less than )(α

∧
t  divided by the number 

of Bootstrap samples Μ  equals α . 
Finally, the Bootstrap-t confidence interval is given by 
 

   






 +−−

∧∧∧∧∧∧∧∧
)().(),().1( θαθθαθ SEtSEt , 

 

with )(
∧∧
θSE  an estimate of the standard error of 

∧
θ , different from ))(( mSE

∧∧
θ . 

2.3.2 The Bootstrap percentile interval 
 
A second way of producing intervals is the Bootstrap percentile interval.  Intervals produced 
using this method have the advantage of being transformation-respecting and range-preserving. 
The Bootstrap percentile interval is calculated in the following way. First, given Bootstrap 

samples 1b , ..., Mb , Μ= ,...,1m , the estimates )(m
∧
θ  are calculated from each Bootstrap 

sample. Second, the cumulative distribution function, 
∧
Η , of )(m

∧
θ is determined. Finally, the 

α21−  percentile interval is defined by the α  and the α−1  percentiles of 
∧
Η  

 

 =
∧∧

),( highlow θθ






 −ΗΗ

∧
−− )1(),( 11 αα , 

 

with )(1 α−Η = )(m
α

θ
∧

, the 100.α  percentile of the Bootstrap distribution of the )(m
∧
θ ’s. 

2.3.3 The BC a  interval 
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Another Bootstrap interval is the Bootstrap BC a  interval. The Bootstrap BC a  is an improved 

version of the Bootstrap percentile interval, and has the advantage of being transformation 
respecting and accurate and is recommended for general use. The Bootstrap BC a  interval stands 

for bias corrected and accelerated. It depends on two numbers; a  (acceleration) and b  (bias 
correction). The BC a  interval of α21−  coverage is given by 

 

BC a : =
∧∧

),( highlow θθ






 ∧∧

)(),(
21

mm
δδ

θθ , 

 
where 

 

   { })))((1/())((1 ααδ scorescore zbazbb +−++Φ= , 

 
and  
 
  { })))1((1/())1((2 ααδ −+−−++Φ= scorescore zbazbb , 

 

with (.)Φ  is the standard normal cumulative distribution function, and )(αscorez  is the 100.α  th  

percentile point of a standard normal distribution, e.g. %95)96.1( =Φ  and .96.1%)95( =scorez   

The acceleration a is calculated using the Jackknife method. The Jackknife method involves 

computing the estimate, i

∧
θ , from the original sample with the i th  value deleted. Then the 

acceleration a  is given by 
 

   

2/3

2

1

(.)
3

1

(.) )(/)(






 −−=

∧

=

∧∧

=

∧

∑∑ i

n

i

i

n

i

a θθσθθ , 

 

with  (.)

∧
θ =∑

=

∧n

i
i n

1

/θ .  The quantity a  is called the acceleration because it refers to the rate of 

change of the standard error of  
∧
θ  with respect to the true parameter value θ  (Efron and 

Tibshirani 1993 acknowledge that it is not clear how the formula of a  provides an estimate of the 
acceleration of the standard error, and refer to a paper written by Efron for discussion.). 
The bias correction number, b, is obtained from the proportion of Bootstrap replications less than 
the original estimate. In other words, b is given by  
 

    






 Μ<Φ=

∧∧
− /))((#1 θθ mb , 

 

with Μ= ,...,1m , and 1−Φ  is the inverse function of a standard normal cumulative distribution 

function, e.g. .645.1%)95(1 =Φ−  
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2.4 Bootstrap types 
 
In this section three Bootstrap types are described. First, the parametric Bootstrap is discussed. 
Second, the Bayesian Bootstrap is described. This is followed by a discussion of the smoothed 
Bootstrap. 
A substitute for the non-parametric Bootstrap methods discussed so far is the parametric 
Bootstrap. Instead of re-sampling from the empirical distribution, the population is assumed to 
have a parametric distribution. From the assumed parametric density estimate Μ  Samples of size 

n are then drawn. From each of the Μ  samples the Bootstrap replication )(m
∧
θ  of 

∧
θ  is 

calculated, and the standard deviation of the Μ  replications of 
∧
θ  is used as an estimate for the 

standard error of 
∧
θ . 

The Bootstrap can be used after applying Bayesian methods. First, a sample ]1[]1[ ,..., −nUU  of size 

1−n  is drawn from the Uniform distribution )1,0(U . Second, the sample is organized in an 

ascending order. Third, ]0[U  and ][nU  are defined by 0]0[ =U  and 1][ =nU . Having the ordered 

values ][]1[]1[]0[ ,,...,, nn UUUU − , the statistic iv , ni ,...,1= , is defined by ]1[][ −−= iii UUv . In 

other words, iv  is the difference between every two successive values of the ordered values 

][]1[]1[]0[ ,,...,, nn UUUU − . The last step is to select n observations with replacement from the 

original sample nxx ,...,1 , with ix  having probability iv  of being selected instead of n/1 , i.e. 1x  

is selected with probability 1v , 1x  is selected with probability 2v , en so on. A second set of 

Bayesian Bootstrap replication is created in the same way but using a new set of  1−n  uniform 
random numbers and therefore, new iv ’s. This process is repeated Μ  times and Μ  Bootstrap 

samples of size n  are created. 
The last Bootstrap type to be discussed here is the smoothed Bootstrap. This method replaces the 

empirical distribution, 
∧
F , by a smooth distribution based on a Kernel density estimate of F . 

Then re-sampling is done from the smoothed estimate. 
 

2.5 Bootstrap applications 
 

2.5.1 Bootstrap applications in regression analysis 
 
Sections 2.5.1 and 2.5.2 discuss two applications of the Bootstrap. In section 2.5.1 the 
applications of the Bootstrap in regression analysis are described. The Bootstrap applications in 
time series analysis are viewed in section 2.5.2. 
The Bootstrap can be applied in regression analysis in two ways. First, the Bootstrap can be 
applied to regression residuals. Second, the pair of dependent and independent variables can be 
bootstrapped.  
Bootstrapping residuals is done in the following way. First, the regression model 

,,...,1, nixy iii =+=
∧
εβ is fitted using Least Squares method or the Likelihood method. 
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Second, the residuals, 
∧∧

−= βiii xye , are calculated. Third, a random sample of size n is selected, 

with replacement, from nee ,...,1 . Fourth, the sample from residuals, nee
*

1

*

,..., , is used to generate 

a new response variable, iii exy
**

+=
∧
β . Next, the procedure is repeated Μ  times, creating Μ  

Bootstrap samples from the residuals and Μ  newly created response variables, 

.,...,1,,...,1),(
*

Μ== mnimyi  Finally, the Bootstrap Least Square estimate of 
*

, ββ , is the one 

that minimizes the residual square error for the Bootstrap data. In other words, 
*

β  is given by: 
 

    2
*

1

*

)(

*

))()((min
*

mxmy i

n

i
i

m

ββ
β

−= ∑
=

, 

 
where  
 

   ∑∑
==

Μ==
n

i
ii

n

i
i mxmyxm

1

2
*

1

*

,...,1,/)()(β . 

 
Instead of bootstrapping the residuals, the pairs ix  and iy  can be bootstrapped. First, Μ  

samples of size n are drawn, with replacement, from nxx ,...,1  and Μ  random samples of size n 

are drawn, with replacement from nyy ,...,1 . (Random samples of size n of integers are drawn, 

with replacement, from n,...,1 . The integers drawn will be the index of values chosen from the 

original sample. In other words, if integer j  is chosen, the Bootstrap thi  observation )(mxi  will 

be jx .) Second, Μ bootstrapped pairs Μ==






 ,...,1,,...,1,)(),(

**

mnimymx ii , are created, 

where )(),...,(
*

1

*

mxmx n  is the thm  Bootstrap sample from nxx ,...,1 , and )(),...,(
*

1

*

mymy n  is the 

thm  bootstrapped sample from nyy ,...,1 . Next, the regression coefficient )(
*

mβ  for each two 

Bootstrap samples is calculated. Finally, the Bootstrap estimate of β  is given by 
 

    2
**

1

*

)(

*

))()()((min
*

mmxmy i

n

i
i

m

ββ
β

−= ∑
=

 

 

2.5.2 Bootstrap methods in time series analysis 
 
Two methods of applying the Bootstrap in time series are considered in this section. First, the 
method of bootstrapping residuals is described. Second, the moving blocks Bootstrap method is 
discussed. 
A procedure similar to bootstrapping residuals in regression can be used in time series analysis 
(see Appendix B section B.1 for description of time series analysis). The first step is to estimate 
β  using either the Least Squares method or the Maximum Likelihood method. Next, residuals of 
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the model are calculated. The following step is to bootstrap residuals as was done in section 2.5.1, 
and using the residuals to create a new response variable. Then from each bootstrapped time 

series a replication of 
∧
β  is calculated using either Least Squares or Maximum Likelihood 

procedures. Finally, the standard error of the Bootstrap estimates of β  is calculated. 
The second Bootstrap method to be discussed here is the moving blocks method. First, a block 
length is chosen. Second, all contiguous blocks of the specified length are considered. Third, a 
sample with replacement from each block is drawn, and pasted together to form a time series. 

Finally, the Bootstrap replication of 
∧
β  is calculated for the Bootstrap sample. This procedure is 

repeated Μ  times, and the standard error of the Bootstrap estimates of β  is calculated. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
 



   

   10 

3 Data and methods 
 

3.1 Data sources 
 
Data used in this paper were obtained from different sources (see References). The information 
on the Bootstrap was obtained from Efron and Tibshirani (1993) and Chernick (1999). The data 
on probabilistic models of population forecasting were mostly obtained from scholarly journals. 
Sources for time series analysis were Hamilton (1994) and Johnston and Dinardo (1997). Medhi 
(1994) and Ross (2000) were the sources for the branching Galton-Watson process. 
 

3.2 The deterministic model and the Leslie matrix 
 
In this section the deterministic model and the Leslie matrix are discussed. Given an age 
distribution of a population on a certain date, the deterministic model calculates an age 
distribution of the survivors and descendants of the original population at successive intervals of 
time. The individuals are supposed to be subjected to the same age-specific fertility and mortality 
rates. 
Considering only the female population, and using constant age-specific fertility and mortality 
rates the deterministic model can be described as follows (Leslie 1945). The model can be 
expressed in 1+l  linear equations, where l  is the highest age considered in the life table 
distribution. Leslie defines ),( tjΡ  as the number of females alive in age group j  to 1+j  at 

time t , )( js  as the probability that a female aged j  to 1+j  at time t  will be alive in the age 

group 1+j  to 2+j  at time 1+t  (survival probability), and )( jb  as the number of daughters 

born in the interval t  to 1+t  per female alive aged j  to 1+j  at time t , who will be alive in the 

age group 10 −  at time 1+t  (birth rate). Then the age distribution at the end of one unit’s 
interval will be given by 
 

           )1,0()0,()(
0

Ρ=Ρ∑
=

l

j

jjb  

)1,1()0,0()0( Ρ=Ρs  

)1,2()0,1()1( Ρ=Ρs  

M   

                                                  )1,()0,1()1( llls Ρ=−Ρ−  
 
In the highest age group )1,(lΡ  the age l  can be as small as 85 years and as large as 110 years 

(Alho and Spencer 1991). In the former case )(ls  can be introduced to the calculation of )1,(lΡ  
as the survival probability in the last age group (In this case the last equation will be given by: 

)1,()0,()()0,1()1( lllslls Ρ=Ρ+−Ρ− .). In the latter case )(ls  can be assumed to be zero, so 
that there is no survival in the last age group.  
In matrix notation this can be expressed as )1()0( Ρ=ΑΡ , where )0(Ρ  and )1(Ρ  are column 

vectors giving the age distribution at 0=t  and 1=t  respectively, and the matrix Α  is given by 
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−

=Α

.)1(...

.....

.....

....)0(

)(...)0(

ls

s

lbb

 

 
The matrix Α  is a )1()1( +×+ ll  matrix and is called the Leslie matrix. All elements are zero’s, 

except those in the first row and in the sub diagonal below the principal diagonal. The )( js  

figures lie between zero and one, and the )( jb  figures are by definition positive quantities, with 

some possibly zero. Since )0()1( ΑΡ=Ρ , )0()1()2( 2ΡΑ=ΑΡ=Ρ , then )0()( ΡΑ=Ρ tt . The 

)( jb ’s and the )( js ’s figures are calculated using life table functions (see Keyfitz 1968b). 
 

3.3 Ex-post analysis 
 
The first category of probabilistic models of population projection to be discussed here is Ex-post 
analysis. This method transforms past projections and their realizations into confidence intervals 
for future population projections. 
The method was pioneered in Keyfitz (1981). The author compares past forecasts with 
subsequent population performance. More specifically, he looks back to estimates for the 1970 
population made in 1950, and compares actual and projected populations for 1970. This 
comparison provides a unit of information for the 1980-2000 population given that the same 
method of forecasting is used, and there are similar fluctuations of population in the past and the 
future. 
Keyfitz’s method can be described as follows. First, World countries are divided into three groups 
of 30 countries each; slow growing countries with annual growth rate of up to 1.8 percent, 
medium growing countries with annual growth rate between 1.85 and 2.6 percent, and fast 
growing countries with annual growth rate above 2.6. Three jump-off years are used; 1958, 1963 
and 1968. Projection durations of 5, 10, 15 and 20 are used for 1958; 5, 10 and 15 for 1963; and 5 
and 10 for 1968.  
The next step is calculating error terms. For the jump-off year 1958, Keyfitz calculates for the 
group of slow growing countries, for the projection durations 5, 10, 15 and 20, the root mean 
square error (RMS), defined by: 
 

    30/
30

1

2∑
=

=
i

ieRMS , 

 
with ie  is the difference between the projected and realized population for country 

.30,...,1, =ii  The procedure is repeated for the group of medium growing countries, and that of 
the fast growing countries. The same method is applied to the three groups of countries for the 
jump-off year of 1963, for the projection durations of 5, 10 and 15 years. Finally, the procedure is 
repeated for the jump-off year 1968, for the projection durations of 5 and 10 years. 
The author’s next step is to combine all jump-off years and projection durations. The RMS is 
calculated for the slow growing countries. The same is done for the medium and fast growing 
countries. Keyfitz concluded with a RMS of 0.29 for slow growing countries, 0.48 for medium 



   

   12 

growing countries, and 0.6 for fast growing countries. The author constructed 67 percent 
confidence intervals for the United States growth rate and the United States population in the year 
2000. 
Finally, the author calculated RMS for the world as a whole. After combining all countries in one 
category and considering all projection durations, Keyfitz introduced the one figure summary for 
the whole world, RMS of 0.48. The figure was rounded to 0.4, recognizing the declining trend in 
RMS from 1958 to 1968. 
Another attempt to use observed errors in past projections was made by Stoto (1983). The author 
defines a statistic that takes into consideration the duration of projection and the population size. 
Then, the distribution of the statistic is studied in order to make a statement about future 
projection errors, i.e. confidence intervals. 
Stoto’s method can be described as follows. First, The growth rate, )(tλ , is assumed to be a 

function of time. Second, an exponential population growth is also assumed. Then, with )0(Ρ  the 
population at time zero, the population at time ι  can be expressed as: 
 

    dtt∫Ρ=Ρ
ι

λι
0

)(exp)0()( , 

 
and the average growth rate over the projection period is given by 
 

   ∫=
ι
λιλ

0
)(/1 dtt  

 
This leads to the expression of )(ιΡ  and λ  as  
 
                                )exp()0()( λιι Ρ=Ρ  
 
and  
 

                                                         ( ){ } ιιλ /)0(/)(log ΡΡ=  

Defining )(
^

tΡ  as the projected population at time t, and )0(
^

Ρ  as the estimated population at time 
zero (the true population at time zero might not be known), Stoto defines the following measure 
of error, e , as: 
 

)}()0(/)0()(log{(/100)(100
^^

ιιιλλ ΡΡΡΡ=−= actualprojectede  
 
Using US population projections made by the US Census Bureau, in jump-off years 1945, 1950, 
1955, 1960, 1965, 1970 for target years 1950, 1955, 1960, 1965, 1970, 1975, Stoto studied the 
distribution of e . The author introduced dummy variables for the jump-off year, target year, and 
projection duration and conducted regression analysis of e to measure the contribution of each 
factor to the overall variability. Based on the analysis of variance it was found that the jump-off 
year effects were significant for developed and developing regions, but that the target year and 
duration effects were not significant. Consequently, it is concluded that the error is at least 
composed of two parts; a part depending on the jump-off year, and a random part. 
In addition, using United Nations projections, Stoto studied the distribution of the jump-off error 
and the random term. The United Nations divides the world into 24 regions. Stoto introduces the 
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error measure, ijke , for each region i , 24,...,1=i , and each jump-off year 

 1965 1960, 1955, 1950,, =jj , and each duration 20,15,10,5, =kk . The author defines the 

jump-off error, ije
−

, as the mean of ijke , for a specific region i , for the specific jump-off year j , 

over all durations k . Consequently, the random term will be given by: 
 

                                                                  ijijkijk ee
−

−=ε  

 
Stoto studied the distributions of both the jump-off error and the random term. The distribution of 
the jump-off error remained stable for the developed countries, while for the developing countries 
early projections were biased. The distribution of the random error was symmetric around zero, 
and had a roughly normal shape except for occasional outliers. 
Next, the author estimates the error variance. He estimates the variance of ijke  by: 

 

   )var()var()var( ijkijijk ee ε+=
−

, 

 
based on United Nations data for developed regions. (Another estimate of the standard deviation 
based on the United States data is referred to as the pessimistic estimate in Stoto (1983).) Finally, 
Stoto ‘s 95 percent confidence interval is constructed as follows: 
 

{ } +Ρ−Ρ=ΡΡ projectedijkprojectedhighlow TeTtt λλ (exp()0()))),var(96.1((exp()0({)(),(  

))))}var(96.1( ijke  

 
Observed errors in past projections were also used by Keilman (1998). The author compared 
projected numbers for total population size, crude birth rate, crude death rate, and age structure in 
five-year groups for the period 1950-1990 with corresponding Ex-post observed numbers. The 
measure used was the percentage error, (PE), defined by: 
 

   100*





 −=

nobservatio

nobservatioForecast
PE  

 
For results that are not size dependent, Keilman used mean error, with error defined as the 
forecast minus the observed value. Keilman’s analysis was based on the United Nation medium 
variant. However, no projections were made using the measures calculated. 
The methods in this sections use past forecasts and their realizations. Keyfitz (1981) uses the 
difference between the projected and realised populations, while Stoto (1983) uses the difference 
between the projected and realised growth rates. Keyfitz uses the root mean squared error (RMS), 
while Stoto calculates the variance of error observed after concluding that the error is composed 
of two parts. The authors then calculate confidence intervals for projected populations based on 
the calculated RMS and standard deviation.  

3.4 Analysing past demographic time series 
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This category of population projection is concerned with the total population size. Age structure 
details are not dealt with. Two contributions will be discussed, that of Cohen (1986) and that of 
Pflaumer (1992). 
In Cohen (1986) the author constructs confidence intervals using four different methods. The first 
two methods are model based, both using )log(λ  and the variance derived by Heyde and Cohen 
(1985) (see section 3.6.1). The other two methods are empirical methods based on the distribution 
of error of forecasts. The forecasts for all four methods are done using methods described in 
Heyde and Cohen (1985).  
The author starts with some definitions. Let 1=t  be the point in time of the earliest observed 
population size, Tt =  the point in time of the last observed population size, and ι=t  the point 
in time the projection is supposed to describe. Defining the total population at time t , )(tW , 

))(,log()( ' tetW Ρ= , with 'e  a vector of ones, the forecasts are given by: 
 

( ))1()()1/()()()( WTWTTTWW −−−+= ιι  

 

Cohen bases his results on three assumptions. First, the projection matrices )(tΑ  form a 
stochastically stationary ergodic sequence that is uniformly mixing. Stochastically stationary 
means that the joint probability distribution of any finite number of the matrices Α  is invariant 
with respect to shifts in time. Furthermore, the sequence )(tΑ  is ergodic if for every event 

defined in terms of a finite number of matrices Α , the average frequency of the event converges 
almost surely to the probability of the event. Uniformly mixing means that the vital rates in the 
matrix )( 1tΑ  at time 1t  approach independence of the rates in the matrix )( 2tΑ  at time 2t , as 

the times 1t  and 2t  become farther apart. The sequence of the projection matrices is uniformly 
mixing if the matrices are i.i.d. or they are finite in number and determined by an ergodic Markov 
Chain of arbitrary finite order. Second, the author assumes that there is a uniform upper bound on 
the largest vital rates that occur in the matrices, so that for an integer d  any product of matrices 
has all of its elements positive with probability one. Finally, it is assumed that there is a constant, 
greater than one, such that ratio of the largest element in Α  to the smallest positive element in Α  
is less than or equal to the constant, with probability one. (To check these assumptions, Cohen 
suggests that the log of the population size be plotted against time over a long span. If the 
assumptions are plausible, then the population size should fluctuate around a straight line. The 
absence of trends is consistent with stationarity.) 
The first method for constructing a confidence interval can be described as follows. With sd is 
standard deviation (calculated by methods in Heyde and Cohen (1985)), the confidence interval is 
given by: 
 

[ ] +−−±−−−+ −−<< )1(2/)(
2/1

0 )1)({(min)1/())1()()((()( qqq zTTsdTWTWTTW αα ιι
})( 2/

2/1
qzT−ι        

 

To calculate q , Cohen considers two events. Event 1 is that |)log()log(|
^

λλ −  and 

)log()()()(
^

λιι TTWW −−−  are bounded by multiples of the standard deviation. More 

specifically,  
 



   

   15 







 −<−= 2/

2/1
^

)1()log()log(1 pzTsdEvent λλ  and 

 

2/
2/1

^

)()log()()()( qzTsdTTWW −<−−− ιλιι  

  
Event 2 is that )(ιW  lies in the following interval   

 
{ })(2 ιWEvent =  is in the interval  

 
 

( ) { }2/
2/1

2/
2/11 ))(()1)((()1()()1)(()( qp zTsdzTTsdWTWTTTW −+−−+−−−+ −− ιιι  

 
Cohen, noting that 1Event  implies 2Event , states that )1Pr()2Pr( EventEvent ≥ , and one 
has asymptotically  
 

)1)(1()1Pr( qpEvent −−≈ ,        (3.4.1) 
 
because of normality and mixing. The author then sets )1)(1(1 qp −−=−α , and solves for the 
value of p determined by each choice of q. Then the value of q that minimizes the width of the 
interval in 2Event  is chosen. 
Cohen then moves to the second method of constructing confidence intervals. The author 
introduces the interval: 

 

( ) { } 2/

2/1121 )()1()()1()()1)(()( αιιι zTTTsdWTWTTTW −+−−±−−−+ −−  

 
The term next to sd is derived in the following way. Let 1Υ  and 2Υ  be independent standard 
normal variables. An equivalent formulation of (3.4.1) is 
 

2
2/1

1
2/1 *)(*)1)(()log(*)()()( Υ−+Υ−−+−−≈ − sdTsdTTTTWW ιιλιι      (3.4.2) 

 

The term 1
2/1 *)1)(( Υ−− − sdTTι  represents the variation in )(ιW  contributed by the possible 

deviation between )log(λ  and )log(
^

λ , while the term 2
2/1 *Υsds  represents the variation in 

)(ιW  contributed by the increment to population size between the launch and the target. 
Asymptotically these two terms are independent due to the mixing hypothesis. For every real 
numbers 1a  and 2a , and a standard normal variable Υ , 2211 Υ+Υ aa  has the same distribution 

as Υ+ 2/12
2

2
1 )( aa . Hence (3.4.2). 

The third method of constructing confidence intervals considers the distribution of forecast errors. 
Cohen describes the distribution of signed forecast errors by the standard deviation. The author’s 

justification for using the standard deviation is that the forecast errors, 






 − )()(

^

ιι WW , were 

found to look roughly normal. 
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The last method is based on Stoto’s estimates of the standard deviation (See section 3.3). Cohen’s 
last confidence interval is given by  
 

StotosdTTTW *)()log(*)()(
^

−±−+ ιλι , 

 
where Stotosd  is Stoto’s estimate of the standard deviation for developed regions. The estimate is 

multiplied by five in order to transform Stoto’s time unit of one year to Cohen’s time unit of five 
years. 
The second approach to model total population sizes to be discussed here is that of Pflaumer 
(1992). The author applies ARIMA models to the United States population 1900-1988. The 
United States population size is determined every ten years, and the data for intervening years had 
to estimated. Two ARIMA models are proposed; the first one for the population size, the second 
one for the logarithm of the population size (see Appendix B section B.1 for a description of time 
series analysis). 
The model for the population size can be described as follows. After differencing the series twice 
for stationarity, a suitable model was found to be an ARIMA (2,2,0) given by: 
 
   )2()1()( 222102 −Ρ∇+−Ρ∇+=Ρ∇ ttt ααα , 

 
where  
 

( ) ( ))2()1()1()()(2 −Ρ−−Ρ−−Ρ−Ρ=Ρ∇ ttttt  
 
The parameters 1α  and 2α  were found to be significant. 
For the logarithm of the population size the author proposes an ARIMA(1,1,0) model. Letting 

))1(ln())(ln()(ln( −Ρ−Ρ=Ρ∇ ttt , the model is given by: 
 
    ))1(ln()(ln( 10 −Ρ∇+=Ρ∇ tt ββ , 

 
where 0β  and 1β  were found to be significant.  

Methods discussed in this section ignore the age-structure and deal only with population totals. 
Cohen (1986) uses methods discussed in Heyde and Cohen (1985) and methods based on forecast 
errors to construct confidence intervals for projected population totals. Pfaumer (1992), however, 
applies time series methods to population totals and the logarithm of population totals. 

3.5 Expert judgement 
 
The first model that incorporates expert judgement to be discussed here is that of Alho and 
Spencer (1985). The authors use a mix of statistical modelling and expert judgement. Realizing 
that error in population forecasts stems from errors in the jump-off population, and errors in 
prediction of future vital rates, they present different models for the jump-off population and for 
the vital rates. 
The authors start with a model for the jump-off population of females in 1980. Based on earlier 
demographic analysis, Alho and Spencer recognize a 2.1 percent net undercount for black 
females, but consider a net overcount of white females apparent citing reasons related to failure to 
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account for many illegal aliens. The authors define the estimate JOΡ , where JO stands for jump 

off or the last time in which data is available, as  
 

=ΡJO 1980 census figure of females + (0.021 ×  1980 census figure of black females) 

 

It is assumed that ),(~)log( 2σµΝΡJO . The median, )exp(µ , equals the estimated true number 

of females. The variance, 2σ , is estimated assuming that the range of interval estimate of female 
illegal aliens (1.75 million, 3 million) has the length of a confidence interval for JOΡ  with a 

certain probability. For example, assuming that the range 1.25 millions is the length of a 95% 
confidence interval for JOΡ , and using the quantiles of the standard normal distribution, the 

variance can be calculated from the following equation 
 

( ) ( )σσ 96.1)log(exp96.1)log(exp25.1 −Ρ−+Ρ= JOJO  

 
To derive estimates for each age the authors make two assumptions. First, it is assumed that the 
age-distribution for January 1980 is perfectly known. Second, the estimates for each age interval 

are perfectly correlated with variances 2σ .  
Next the authors move to model fertility. They predict age-specific fertility, through application 
of approximately linear models. Alho and Spencer define the stochastic process { }Ζ∈ttf |)( , 
the logarithms of the age-specific fertility rates, as 
 
  )()()( ttRtf Γ+= , 
 
where 0))(( =Γ tE , and )(tR  are assumed to be given by 
 

    )()(
1

tRtR i

k

i
i ∆+=∑

=

θ , 

 
where )(),...,(1 tRtR k  are known functions, kθθ ,...,1  are unknown parameters, and )(t∆  

represents the bias of the ideal mean )()( ttR ∆− . (Alho and Spencer consider six age groups, i.e. 

6=k .) The authors assume that the bias )(t∆  is independently generated of )(tΓ , and that it 

satisfies [ ] Ψ≤∆∆ 2' σE , where Ψ  is some symmetric non-negative definite matrix given by 
 

     







ΨΨ
ΨΨ

=Ψ
12

'
20  

 

Alho and Spencer use a diagonal Ψ  with the thi  diagonal element given by 
 
    ||31.0),( Tiii −=Ψ  
 
(For methods of getting the value 0.31 the authors refer to Alho’s unpublished dissertation.)  
The authors consider next the error process )(tΓ . The error process is assumed to be auto-
regressive of order one. The AR(1) parameter is determined from the residuals of a Least Squares 
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regression of past data (see Appendix B section B.1.1). The auto-correlation is averaged for the 
six age groups by 0.71. The cross correlation between age groups r and s is given by 

ksrforsr ,...,1,,88.0 || =− . The covariance of )(tΓ  is given by Σ2σ , with Σ  a known positive 
definite matrix given by 
 

     







ΣΣ
ΣΣ

=Σ
12

'
20   

 
Armed with these assumptions, the authors proceed to calculate an estimate of logarithms of the 
age-specific fertility rates, )(tf . Assuming that )(tf  at Tt ,...,1=  is observed, the authors 

define the vectors ( ))(),...,1(0 Tfff = , ( ))(),...,1(0 T∆∆=∆ , and ( ))(),...1(0 TΓΓ=Γ . For 

predictions for the periods sTTt ++= ,...,1 , the following vectors are defined 

( ))(),...,1(1 ιfTff += , ( ))(),...,1(1 ι∆+∆=∆ T , and ( ))(),...1(1 ιΓ+Γ=Γ T . Furthermore, 
the design matrix Χ  is defined by  
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This indicates that the model mentioned above can be formulated as  
 
     000 Γ+∆+ΧΘ=f  

 

To predict 1f  the authors use the linear Minimax mean squared error prediction1 0
' fΛ  where 
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1 For details on the calculation of the linear Minimax mean squared error prediction, Alho and Spencer 
refer to Alho’s unpublished PH.d dissertation.  
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For the calculation of the fertility rate Alho and Spencer incorporate Expert judgement. The 
authors give the United States Bureau of Census (USBC)’s forecasts a weight of 0.8. The 
Minimax estimate is given a weight of 0.2. 
The authors’ next step is to predict mortality. Alho and Spencer approximate the survival rate, 

),( tjs , by ( )),(exp tjm− , where ),( tjm  is the age-specific mortality rate in age group j  

during year t . The variance of )),(log( tjs  is approximated by ( )),(var tjm . To calculate 

( )),(var tjm  a linear trend was extracted from the ),( tjm  series, and the residual variance was 
calculated. 
The next model to be discussed is that of Pflaumer (1988). Letting )(tNI  represents the vector of 
net immigrants, the author uses the general representation 
 

)()()1( tNItt +ΑΡ=+Ρ     
 
The author starts with a set of assumptions. First, the total fertility rate (TFR) is a random 
variable, and the change in each age-specific rate is proportional to the change in TFR. 
Correlation exists between two succeeding TFR’s, TFR(t) and TFR(t-1), so that TFR(t)-TFR(t-
1)< )(tΧ , where )(tΧ  is random variable. Second, life expectancy is a random variable implying 

that survivorship rates of the matrix Α  are random. Third, )(tNI  is a random variable. For a 

random variable )(tY  Pflaumer assumes a uniform distribution between the estimated upper and 
lower bounds with density: 
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where )(tl  is the estimated lower limit, )(tmed  is estimated median, )(tu  is the estimated upper 

limit, and )(ty  is a realization of )(tY . The expectation and variance of )(tY  are given by 
 

    
4

)()()(
))((

tutmedtl
tYE

++= , 

 

{ } +−+−+++= )([))()()()(()()()())((6/1)(( 2222 tltmedtmedtututmedtmedtltltYVar  
2]4/)()(2 tutmed +  

 
Next, the author proceeds with a simulation process. Fertility and mortality rates are found by 
selecting random numbers from the uniform distribution with specified lower, median and upper 
bounds. Another random number is selected from the uniform distribution with bounds on the 
random variable Χ . The bounds for fertility, mortality, and net immigration distributions were 
based on the assumptions of the United States Census Bureau (USCB) projections made in 1983. 
Bounds on )(tΧ  were obtained from past changes of the TFR. If the condition TFR(t)-TFR(t-

1)< )(tΧ  is not satisfied, a new random number is selected. 
The simulation process is executed in the following way. Using the random survival rates by year 
and age and sex, the population is carried forward. Each year a new birth cohort is added by 
applying random age-specific fertility rates to surviving female population. The population is 
projected to target year ι . This procedure is repeated Μ  times, resulting in Μ  different 
population trajectories starting with year zero and ending with year ι . The Μ  observations of the 
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population at time ι  are then classified into a frequency distribution to get the expected value, the 
variance, and the confidence interval.  
The simulation process used here is similar to the parametric Bootstrap. The parametric Bootstrap 
involves assuming a parametric distribution, in this case the uniform distribution. It also involves 
drawing at random from the assumed distribution, which is also done here. The random draws are 
used to project the population forward, and the procedure is repeated Μ  times creating Μ  
projected population for the target year ι . From the created distribution the standard deviation is 
calculated and confidence intervals are made. 
Alho (1990) applies expert judgement to fertility and mortality rates. The author treats vital rates 
as a realization of random processes, producing high-low intervals with a given probability of 
covering the true size of an age-sex group in a given future year. 
First, the author considers fertility rates. A transformation of the fertility rate in the year )1,( +tt , 

)(' tf  is studied. Next, letting L  be a loss function, the volatility of )(' tf  is defined as 
 

   ( )[ ] rsstfrtftfLE ≤−−− ,)(|)()( '''  
 
Alho used the Finnish fertility in 1776-1976. The loss function ||)( yyL =  was used. Instead of 

using direct age-specific fertility rates, Alho uses their average )(tf
−

 defined by the TFR divided 
by the number of child-bearing ages (30). Furthermore, the author incorporates expert judgement 
by using a logit transformation, forcing the average fertility rate between a lower bound, )(tf L , 

and an upper bound, )(tfU , based on the observed minimum and maximum. With )(tf L = 

0.025, and )(tfU  = 0.25, )(' tf  is defined as  
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Using a naive forecast 'f  for )(' tf , the present value, then '' )()( ftfte −=  is the prediction 
error, and  
 

  ( ) ( ){ })(exp(1/)(exp(225.0025.0)( '' tefteftf ++++=
−

   
 
The ratio of the number of true births to the point forecast (when 0)( =te ) is given by  
 

( ) ( ){ }
( ) ( ){ })exp(1/)exp(225.0025.0

)(exp(1/)(exp(225.0025.0
''

''

ff

teftef

++
++++

      (3.5.1) 

 

The empirical distribution of the volatility of )(' tf  is now used, after smoothing to reduce 

random errors, to create confidence intervals. For instance, after determining the th67  percentile 

of volatility, the )(te  in 3.5.1 is replaced by the th67±  percentile to produce a %67  prediction 
interval for the number of births. 
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The use of the empirical distribution of the volatility of )(' tf  to create confidence intervals for 
fertility rates resembles the Bootstrap. The resemblance stems from creating percentiles from the 
original sample. The omission of re-sampling, however, is a major simplification.  
The author’s next step is to forecast mortality. Alho suggests using the same volatility method 
used for fertility, using ARIMA models (see Appendix B section B.1) as naïve forecasts, to get 
error bounds for each age-specific mortality rate. To obtain a baseline forecast Alho used an 
ARIMA (0,1,1) model. Using jump-off years 1930-1981, 5, 10, and 15 years forecasts were made 
for both male and female mortality rates. The author used the logit transformation 
 

   ( ) ( ){ })(03.0/002.0)(log)(' tmtmtm −−= , 
 
where )(tm  is the age-standardized mortality rate, and 0.002 and 0.03 are the lower limit and the 
upper limit respectively, based on the minimum and the maximum of the standardized mortality 

rates. From the volatility of )(' tm  error bounds for mortality rates were obtained.  
Lee (1993), incorporating expert judgment, applies the Lee-Carter method (see section 3.6.2) to 
fertility. Define )( jc  and )( jd  as constants, and )(tf  as a time varying fertility index. Letting 

),( tjf  be the collection of fertility rates for age j  and time t , the ),( tjf  is given by 
 

),()()()(),( tjejdtfjctjf ++= ,        (3.5.1) 
 
where the sjd )'(  are standardized to sum to unity, and the stf )'(  to sum to zero. This way the 

)( jc  will equal the average age-specific values, and c , the sum of sjc )'(  over j , will equal the 
average value of the TFR. Summing both sides of equation 3.5.1 over j  results in  
 
    )()()( tEtfctTFR ++= , 
 
where )(tE  is the sum across age of the ),( tje . ( )(tE  should be close to zero.) 
For the estimation of the TFR Lee proposes two methods. The first method starts by estimating 

)( jc  and )( jd  (see section 3.6.2). Then ctftF += )()(  is defined. To ensure non-negative 
fertility rates, Lee specifies lower and upper bounds on the TFR, denoted by Upper and Lower 
respectively. Then a transformed fertility index, )(th , is defined by 
 
   ( )))(/())((ln)( tFUpperLowertFth −−=  
 
This series can be modelled as a times series and forecasted. Next, the forecast of )(tF  is 

obtained by transforming back to )(tF  from )(th  using  
 
   ( ) ( ))(exp(1/)(exp(.)( thLowerthUppertF ++=  
 
This ensures that the forecast and its probability interval will fall between Upper and Lower. 
Expert judgement is applied by taking the lower and upper limits to be zero and four respectively. 

Lee’s second proposed method involves a convergence level for the TFR. Letting *F  be the level 

to which the forecast will converge in the long run, Lee defines the process *)()( FtFtx −= . 

Lee suggests modelling )(tx  as an ARMA model with no constant term, forecast ing )(tx  over 
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the desired horizon, and recovering the forecast of )(tF  by adding *F  to the forecast of )(tx . 

Expert judgement is incorporated by taking *F  to be 1.85, which is the average of the USCB 
assumption of 1.8 and the Social Security Actuary’s assumption of 1.9.  
Lutz et al. (1996) applied expert judgment to population projection resulting in what is known as 
the random scenario approach. This method, like the preceding one, is based on a mix of expert 
judgement and stochastic modelling. Experts are asked to provide both a point forecast as well as 
high and low levels for fertility, mortality, and migration for 2030-2035. The consensus about 
ranges in 2030-2035 is thought to cover 90 percent of all future paths of the TFR, life expectancy 
at birth, and the interregional migration matrix. 
To predict fertility rates, the authors proceed as follows. The high-low levels provided by experts 
are determined to constitute 90 percent confidence intervals for TFR. After assuming a normal 
distribution for TFR and defining kD  as the difference between the high and low levels at time k, 

the standard deviation could be estimated by kD /3.29 (Assuming normality the 90 percent 

confidence interval is given by: [Mean value σ645.1± ]. Assuming further that  the high-low 
intervals provided by experts constitute 90 percent confidence intervals means that kD  is the 

difference between the confidence limits of the 90 percent confidence interval. In other words, 
σσσ 29.3)645.1(645.1 =−−+= valueMeanvalueMeanDk , and therefore 

29.3/kD=σ .). Then iz , the thi  draw from a standard normal distribution, is used to create the 
thi  random TFR in the following way 

 
    29.3/kikik DzuTFR += , 

 
where ku  is the central value for TFR determined by the experts for time k. This was done for the 

year 2000, 2030-2035, 2080-2085. TFR’s at other dates were calculated using linear interpolation 
between two adjacent dates (see Appendix B section B.3). For the years after 2080-2085 the 
TFR’s are assumed to remain at the 2080-2085 levels. 
As for mortality, the authors apply a similar procedure. First, the low, central, and high levels of 
mortality are converted into values of life expectancy. Second, the same procedure applied to 
fertility is used to predict life expectancy. 
Next, the authors proceed with predicting migration. Experts were asked to provide high values 
for migration forecasts. The central value was assumed to be half the high value, and low values 
assumed to be zero. The random migration flow for region r  is then given by 
 
    29.3/rirrik DzuMG += ,  

 

where ru  is the central migration level for region r , iz  is the thi  draw from a standard normal 

distribution, and rD  is the difference between the high and low migration levels for region r . 
Lutz et al. then proceed as follows. The process of random drawing from a standard normal 
distribution was repeated 1000 times. Based on the random fertility, mortality and migration 
rates, 1000 independent cohort-component projections were performed for 2030-2035. The 
resulting 1000 independent simulation for each region resulted in a distribution of the resulting 
population for all age groups. From this distribution interesting results (e.g. the median, 
percentage above 60 years, 95 percent confidence intervals) can be drawn. (Lutz et al. (1997) 
applied the random scenario approach to the World’s population.) 
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The procedure of random drawing from a standard normal distribution is a partial application of 
the parametric Bootstrap. A parametric distribution is assumed, a standard normal distribution, 
and random draws are made from it. The random vital rates are then used to project the 
population forward. This procedure is repeated 1000 times. The resulting distribution of projected 
populations is then used to create confidence intervals. 
To justify the assumption of the 90 percent coverage of the high-low interval, Lutz and Scherbov 
(1997) carried out sensitivity analysis. Two different distributions of population projection were 
obtained based on the assumption that the same interval covered 85 percent and 95 percent. 
Using t-tests, the hypothesis of equal means could not be rejected at any period. 
Lutz and Scherbov also use an alternative method by introducing an auto-regressive component 
to the scenario. The authors introduce the scenario, )(tw , for the measure to be forecasted (i.e. 
TFR, change in life expectancy, or net migration) as 
 
    )()()( tttw εν += , 
 
where )(tν  is a function that passes through the mean values of the fertility, mortality, and 

migration rates as defined by the experts, and )(tε  is given by the auto-regressive process 
 

    )()1()( ' ttt εαεε +−= , 
 

with ),0(~)( '
2'
εσε Nt . Assuming that 8.0=α  and that )(2

)(
2 ttw σσ = , where )(2 tσ  is the 

variance of the variable considered (fertility, mortality or migration) derived according to the 90 

percent range given by experts in year t , the authors calculated '2
εσ  using  

 

    
)1(

)1(
2

2
2
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'
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ασσ ε
−
−=

t
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Building on the aforementioned work in Lutz et al (1996, 1997) and Lutz and Scherbov (1997), 
Lutz et al. (2001) introduce a new model for forecasting the vital rates. The )(tw ’s are given by 
 

    )()()( ttwtw ε+=
−

, 
 

where )(tw
−

 are assumed means for the fertility, change in life expectancy, and net migration, and 

))(,0(~)( 2 tNt εσε , and the variance of )(tε , )(2 tεσ , is supposed to depend on the rate 

considered.  Lutz et al. use a moving average representation for )(tε  given by 
 

    






= ∑
+−=

−

t

nti
itzntt

1

2 /)()( εσε , 

 
where the iz ’s are the values of independent draws from a standard normal distribution, and n  is 

the number of periods in the moving average scheme. 
Lutz et al. (2001) also introduce a model for correlation. For each forecast year the authors 
generate correlated random numbers. Given K  correlated states (regions or vital rates), a column 
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vector of the K  correlated values, )(),...,()( 1 trtrtr K= , is generated. It is further assumed that 

)(t
ir

σ  is one, with Ki ,...,1= . If Σ  is the assumed variance-covariance matrix, then 

)(),...,()( 1 ttt KΣΣ=Σ  is calculated from the equation 
 

     )()( ' trt Ξ=Σ , 
 
where Ξ  is the Cholesky decomposition of Σ (Bay 1999, pp. 523). 
Sanderson et al. (2003), using models developed in Lutz et al. (2001), suggest two methods for 
conditional probabilistic population forecasting. The first method is used to answer what-if kind 
of questions. The second method makes conditional probabilistic forecasts based on future jump-
off years. 
The first method can be described as follows. Projections were made for the period 2000-2050 
based on methods in Lutz et al. (2001). A distribution for global population in 2005 was made 
from 2,000 simulated projections. The simulated projections were divided into those made using 
low fertility assumption (average fertility is less than 1.6), those using medium fertility 
assumption (average fertility between 1.6 and 1.8), and those using high fertility assumption 
(average fertility greater than 1.8). Each category was then reclassified based on whether the 
forecasts were made based on low life expectancy (less than 68 years), average life expectancy 
(between 68 and 71 years), or high life expectancy (above 71 years). Using these categorizations, 
the authors were able to answer some what-if kind of questions, e.g. what would be the effect on 
the world population size in 2050 of high fertility trends against low fertility trends over the 
coming decades combined with the medium range of uncertainty for future mortality? 
The second method involves making population forecasts based on future jump-off years. 
Projections were first made for the year 2010 based on information in the year 2000. The 
simulated projections were then divided into two groups of 1000 each, depending on whether the 
simulated values were above or below the median of the distribution. Next, projections were 
made up to the year 2100 based on the projected population for the year 2010. For each year the 
projected values were divided into two groups the L group, projected values based on simulated 
values in 2010 that were below the median, and the H group, based on simulated values in 2010 
that were above the median. 
Methods mentioned in this section incorporate expert judgement in different ways. Alho and 
Spencer (1985) give experts forecasts a weight of 0.8, and the developed Minimax estimate a 
weight of 0.2. Pflaumer (1988) selects fertility, mortality and net migration rates from a uniform 
distribution with bounds based on the USCB projections. Using a logit transformation Alho 
(1990) forces the average fertility rate and the age standardized mortality rate between lower and 
upper bounds based on observed maximum and minimum. To ensure non-negative fertility rates 
Lee (1993) uses a fertility index after specifying lower and upper bounds on the TFR. Lee also 
proposes another method based on a convergence level for fertility determined by expert 
judgement. Lutz et al. (1996) assume that the high-low intervals provided by experts for fertility, 
mortality and migration cover 90 percent of all future paths and calculate a standard deviation 
based on this assumption using the so-called random scenario approach. Lutz et Scherbov (1997) 
apply the random scenario approach in combination with time series analysis to forecast fertility, 
mortality and migration rates. The random scenario approach is also used by Sanderson et al. 
(2003) to develop the conditional probabilistic population projections. 
 

3.6 Stochastic models for forecasting vital rates 
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In this section stochastic models for forecasting vital rates are considered. First, methods 
explained in Sykes (1969) are described. Second, Lee’s methods of using time series analysis to 
forecast births are explained. Third, the Lee-Carter method for forecasting mortality is discussed. 
Fourth, methods developed by Alho and Spencer (1991) and Alho (1992a, 1992b) will be viewed. 
Finally, Methods discussed in Bell (1997) are considered. The theories of population projection 
are relegated to Appendix A section A.5. 
The first model to be discussed here is mentioned in Sykes (1969). Sykes introduces three 
stochastic versions of the discrete classical model of population projection.  
First, Sykes introduces the additive errors model. This model is given by 
 
    …=+ΑΡ=+Ρ 0,1t),()()1( tStt ,    (3.6.1) 
 
where )(tS  are random vectors. Sykes assumes further that 0))(( =tSE , and 

( ) ...1,0,,)()( ' =Ψ= tstStSE st . Assuming that stΨ  exists, and substituting repeatedly in 

equation 3.6.2.1, results in 
 

    1
1

)0()( −−
=
∑+ΡΑ=Ρ it

t

i

it SAt , 

 

with ( ) )0()( ΡΑ=Ρ ttE , and ( ))(var tΡ  is given by (see Appendix A section A.1 ) 
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Sykes’ next step is to create confidence intervals for )(tΡ . The author assumes that errors are 

uncorrelated and that they are normally distributed. In other words, ),0(~)( ΨΝ ltS . 

Consequently, 
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'),0(~)( , since )(tΡ  is a linear combination of normal 

variates. Exact confidence intervals for )(tΡ  can then be calculated by considering 
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2
lχ . For the non-

homogenous case, where Α  is a function of time, Sykes replaces iΑ  with the product of the 
Α ’s, so that 
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Sykes’ second method is a Branching process formulation. Individuals are assumed to give birth 

and die with probability )( jb  and )(1 js−  respectively. Each member of the thj  age group at 

time t  has a probability )( js  of surviving to be a member of the 1+j  group at time 1+t , and 

probability )( jb  of contributing a member to the first group at time 1+t . The probability of any 
two or more events is equal to the product of the probabilities of the respective component 
events. 

Presenting the notation ),( tjΡ  for the thj  component of the vector )(tΡ , the model provides for 

),( tjΡ  binomial trials with probability of success )( js , lj ,...,1= , and, independently, for 

),( tjΡ  binomial trials with probability of success )( jb , lj ,...,1= . Sykes argues that the 
assumption of independent binomial trials is equivalent to assuming that the population growth 
process is a multi-type Branching process (See Appendix B section B.2). Moreover, the author 
allows an individual of type j  to have children of types 1 (first age group), and type 1+j , 

1,...,1 −= lj  (i.e. allowing the individual to reproduce and survive). Individuals of type l  are 
only allowed to have children of type 1. Note that the assumption of independence of individuals 
within and between types is a requirement of the Branching process. 
More specifically, Sykes’ Branching process model can be described as follows. The probability 
of having ),( tjΡ  individuals in group j  is given by 
 

[ ] ( )[ ]),(),...,,1()(Pr),(),...,,1(Pr tltttlt ΡΡ=Ρ=ΡΡ , 
 
and the P.G.F. (see Appendix B section B.2) is given by  
 

( ) ),(

),(),...,,1(

),1(
1 ...),(),...,,1(Pr)( tl
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t rrtltrG Ρ

ΡΡ

Ρ∑ ΡΡ=  

 
Sykes uses a normal approximation to the assumed Binomial distribution. The author defines the 
variable )1( +Υ t , ),0(~)1( ΙΝ+Υ t , by 
 

( )[ ] ( )[ ])(|)1()1()(|)1()1( 2

1

ttEtttVart Ρ+Ρ−+ΡΡ+Ρ=+Υ − , 
 
where  
 

( ) ( )[ ])(|)1()(|)1( ttVardiagttVar Ρ+Ρ=Ρ+Ρ  is a diagonal matrix whose non-zero elements 

are the component variances. Another variable, )1( +Ζ t , is defined by 
 

2' ~)1()1()1( lttt χ+Υ+Υ=+Ζ  

 
Sykes then determines the two moments of the process. The expectation is given by (see 
Appendix A section A.1) 
 

    ( ) )0()1( ΡΑ=+Ρ ttE , 
 
and the variance is given by  
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These results are carried over to the non-homogenous case giving 
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Sykes’ third approach is that of the random transition matrix. The author introduces the model 
 
   ( ) )()()1( ttt ΡΚ+Α=+Ρ , ,...1,0=t , 
 
where )(tΚ  is a sequence of independent ll ×  matrix random variables satisfying ( ) 0)( =Κ tE , 

and ( ) Σ=Κ )(var t , with Σ  a singular 22 ll ×  matrix. To find ( ))1( +Ρ tE  and ( ))1(var +Ρ t  
Sykes uses the conditional mean and the conditional variance formulas. The expectation and the 
variance are given by (see Appendix A section A.1) 
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These results carry over to the non-homogeneous case giving 
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Lee (1974) presents time series models for forecasting births to an age-structured population. The 
author suggests a white noise specification, a first order autoregressive model, a second order 
autoregressive model, and a random walk specification. 
Lee starts with introducing models for the number of Births at time t , )(tB , and the net 

reproduction rate, )(tNRR . Defining ),( tjn  as the net maternity function (Keyfitz 1968a, pp. 

100) for age j  at time t , and Upper  as the upper limit of the female reproductive age, Lee 

introduces the following identity for )(tB  
 

)(),()(
1

jtBtjntB
Upper

j

−= ∑
=

        (3.6.2) 

 

Defining the net reproductive rate as ∑
=

=
Upper

j

tjntNRR
1

),()( , it is taken to be one based on the 

assumption of stationarity. Furthermore, the variable ),( tjx  is defined by 
 

)(),(),( jntjntjx −= , 
 
where )( jn  is the expected value of ),( tjn . In addition, Lee defines )(tε  as 

1)()( −= tNRRtε . Letting B  be the long run expected number of births, the variable )(td  is 
defined by 
 

B

BtB
td

−= )(
)(  

 
Lee approximates )(td  (see Appendix A section A.2) by the following AR process 
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This AR process has a moving average representation of the form 
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1
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δη , 

 
where the first three terms of iη ’s are given by 10 =η , )1(01 nηη = , )1()2( 102 nn ηηη += . 

Lee offers the following interpretation for the iη . The iη ’s correspond to the reproduction of a 

single birth 0η  after i  periods, subject to the constant net maternity function. Because of the 

stationarity assumption, the iη ’s converge to a constant value for large i , given by the J/1 , 

where J  is the mean age at child bearing. 
The author starts with a white noise assumption for the errors. After observing a series of births 
and NRR ’s up to time t , the best prediction of birth at time st +  is given by 
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where the values of )( jstd −+  after t  are replaced by their predicted value. The prediction 

error, )()()( stdstdste +−+=+
∧

, can be written as (Johnston and DiNardo 1997, pp. 232) 
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The prediction variance is given by  
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Confidence intervals can then be made for birth predictions using the prediction variance  
 

[ ]22 /)1(1)( JssVar −+= εσ  

 
Lee’s next approach relaxes the assumption of white noise disturbances. The disturbances are 
assumed to have a covariance structure instead. It is assumed that the NRR  can be expressed as a 
linear function of lagged values of a white noise process. The model is given by 
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where )(tτ  is a white noise, and equivalently  
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The best predictor is given by  
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and the prediction error is given by ∑
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Getting back to birth )( std +  can be written as 
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where )( std +
∧

 is the predictor of )( std + . The best predictor of )( std +  is given by 
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The prediction error will be given by 
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Lee presents next a Markov process. The model is given by 
 
    )()1()( ttt τγεε +−=  
 
The predicted fertility is given by  
 

    )()( tst sεγε =+
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This indicates that 
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and the variance is given by 
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by taking 0)0( =α , and 
J

i
1

)( =α . 

Finally, the author presents an AR(2) process and a random walk process. No properties for the 
AR(2) process were given in Lee’s paper. The random walk model, however, was discussed in 
more details and is given by 
 
    )()1()( ttt τεε +−=  
 
The best predictor is the last observed value. Since the base period level of NRR  equals the 

expected value for all future periods, Lee takes 0)( =tε , and 0)( =+
∧

stε , and, therefore,  
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Lee and Carter (1992) present the Lee-Carter method for forecasting mortality. Using the matrix 
of United States death rates 1933-1987, the authors made long run forecasts and confidence 
intervals for age-specific mortality.  
The Lee-Carter model can be described as follows. Let ),( tjm  be the central death rate for age 

j  at time t , )(tk  a time varying mortality index, and )( jc  and )( jd  as defined in section 3.5. 

Then ),( tjm  is modelled as 
 
   ( )),()()()(exp),( tjtkjdjctjm ε++= , 
 

where ),( tjε  has mean zero and variance εσ 2 . 

Lee and Carter suggest the following method for estimation. First, the stk )'(  are chosen to sum 

to zero and the sjd )'(  to unity. Then ( ) Τ=∑
Τ

=

/),(ln)(
1t

tjmjc , ( ){ }∑ −≈
j

jctjmtk )(),(ln)( , 

and )( jd  is found by regressing ( ) )(),(ln jctjm −  on )(tk , without a constant, separately for 
each age group. 
Next, the authors present a model for )(tk . After calculating the mortality index )(tk , the 
authors model it by a random walk with a drift. Introducing the dummy variable flu for the 1918 
influenza epidemic, )(tk  is given by 
 
   )(24.5365.0)1()( tflutktk kε++−−=  

 
The authors’ next step is to make confidence intervals. Lee and Carter ignore all sources of error, 
except that of )(tk . Confidence intervals for life expectancy are constructed using confidence 



 

   32 

intervals for )(tk . With ( ))(tkSE  the standard error of )(tk , the %95  confidence interval for 

the forecast of ),( tjm  is given by 
 
   ( ){ }))(()(96.1expint tkSEjdforecastPo ±  
 
To justify ignoring all sources of error but that of )(tk , Lee and Carter carried out the following 

analysis. The true value of the forecast )()()(),(ln jdstkjcstjm
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The forecast error (FE) is given by 
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Assuming that error terms are independent, the variance of FE is given by 
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The authors proceed with the estimation of the four variance terms. The term )),(var( stj +ε  is 
estimated by the variance of the error of fitting age group j  for the given data. The variance of 

the sjc )'(  was taken to be the variance of ( ) Ttjm /),(ln  where T  is the number of 

observations on )( jm . For ))(var( jdε  Lee and Carter applied the following procedure. From 

the residuals of the original fit of the model of the observed data, 400 samples with replacement 
were taken. The errors were then added to the matrix ( ) ( ),.)(ln),(ln jmtjm − . For each of the 

400 newly created matrices, )( jd  was re-estimated using the methods mentioned above. Finally, 
the variances and covariances were calculated  
The procedure used for ))(var( jdε  is a direct application of the Bootstrap. The residuals of the 

original fit are bootstrapped, and new data are created using the bootstrapped residuals. From 
these new data a new fit is made and )( jd  is re-estimated 400 times. The resulting distribution 

of )( jd  is used to calculate variances. 
Alho and Spencer (1991) derived formulas for the propagation of error. Using a Taylor series 
expansion, formula’s for variances and covariances of the first and second generations of births 
were developed.  
The authors start with a set of definitions. Alho and Spencer define the population vector 

{ }'),(,...,,0()( tltt ΡΡ=Ρ , where ),( tjΡ  is the size of the female population age j  at time t , 
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and l  is the last age group. They also define a )1)(1( ++ ll  matrix ),,( tjiΑ , lji ,...,0, = . The 

elements ),44,0(),...,,15,0( tt ΑΑ  are the age-specific fertility rates of year t , and 

),1,(),...,,0,1( tllt −ΑΑ  are age-specific survival probabilities from age zero to age one, from 

age one to age two, and so on, during time t . The element ),,( tllΑ  is defined as the average 

survival probability in the last age-group. All other elements of the matrix ),,( tjiΑ  are zero. 
This implies the classical Leslie model 
 
    )()1()1( ttt Ρ+Α=+Ρ  
 
Furthermore, the authors make the following set of definitions 
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That means that ),( tjp  is the logarithm of the population at age j  at time t , ),( tjft  is the 

logarithm of age-specific fertility rates at time t  given by ),,0( tjΑ , ),( tjsv  is the logarithm of 

the survival rates from age j  to age 1+j  at time t  given by ),,1( tjj +Α , and ),( tlsv  is the 

logarithm of the survival rate in the last age group l  at time t  given by ),,( tllΑ . 
Using these definitions, the authors introduce the following formulas for the survivors of the 
jump-off population 
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for 11 −≤≤≤ ljt . For lt ≤ , the formula becomes 
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For 16,...,1=t , when there are no births to births, Alho and Spencer present the following 
formula for births 
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The formula for the survivors of the first 16 birth cohorts, [ ] tjt <≤−16,0max , is given by 
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Finally, Alho and Spencer present the formula for the second generation of births, 32,...,17=t , 
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The first sum over j  is for survivors of the jump-off population, and the other sum over j  is for 
births to births. 
Alho and Spencer introduce next randomness to their analysis. Random variables are 
distinguished by a ~. Notation given earlier is reserved for point forecasts. For the jump-off 

population it is assumed that )0()0(
~

ppE =





  and )0()0(cov

~
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 , where )0(p  is a 

known vector and )0(JoΨ  is a known covariance matrix. The authors further assume that there 

are predictions )(tft  for )(
~

tft  such that )()(
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where )(tft  are known vectors and ),( utftΨ  are known covariance matrices, with elements 

),,,( utjiftσ . There are also predictions )(tsv  assumed for )(
~

tsv  such that )()(
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tsvtsvE =
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 , where )(tsv  are known vectors and ),( utsvΨ  are known 

matrices with elements ),,,( utjisvσ . It is further assumed that the variables )0(
~

p , )(
~

tft  and 

)(
~

tsv  are jointly normal, with jump-off population independent of vital rates, and fertility rates 

independent of survival rates. Furthermore, the authors assume that )()(
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tptpE =
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 , where the elements of ),( utΨ  are denoted by ),,,( utjiσ . This 

means that the distribution of )(
~

tp  is approximated by a normal distribution for all t . 
Alho and Spencer proceed with formulas for the covariances. The covariance between the 
prediction error of population size in ages i  and j  at time t , ljit ≤≤≤≤1 , is given by (see 
Appendix A, section A.3) 
 

),,,(),,(),(),,(cov
1

0

1

0

~~

nmntjmtitjitjptip
t

n

t

m
sv +−+−+=






 ∑∑

−

=

−

=

σσ  

 
Alho and Spencer define ),( tjΒ  as the number of children born to a woman age j  at time t . 

That means that ),44(...),15(),0( ttt Β++Β=Ρ , where  
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For the next covariance formula’s Alho and Spencer use a Taylor series expansion (see Appendix 
A, section 1.2). The covariance between the jump-off populations at two different times is given 
by (see Appendix A, section A.3) 
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For the surviving births, [ ] tijt <≤≤−16,0max , 
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tjptip  is given by (see 

Appendix A, section A.3) 
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Alho and Spencer finally consider the covariance between the surviving births in age i  at time t  
and the survivors of the jump-off population at age j  at time u ( )ju ≤ . This covariance is 
given by (see Appendix A, section A.3) 
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In Alho (1992a) and Alho (1992b) the author presents formulas for the propagation of error in 
stochastic cohort-component population forecasts. More specifically, the author tries to identify 
the contribution of different vital processes to the forecast error of different ages. Building on 
earlier work (Alho and Spencer 1991), Alho makes a set of assumptions for the different sources 
of error, jump-off population, mortality, migration and fertility. Furthermore, the author assumes 
that the sources are independent. 
Alho considers first the jump-off population. The author assumes that  
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where 
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and JO stands for jump-off. 
For mortality it is assumed that  
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Alho replaces ),( tjsvε  by its average value )(tsvε , and defines )(tsvε  by  
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with ),0(~)( 2
svsv qe σΝ , i.i.d. for ,...1,0=q  Alho then assumes that the effect of migration on 

error is absorbed into ),( tjsv  by adding an error component. In other words ),(
~

tjs  is given by 
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mgmg t σε Ν , i.i.d. for ,...1,0=t , are independent of )(tsvε . For fertility Alho 

assumes that  
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Furthermore, Alho asserts that the births in the year 1−t  that contribute to ),0( tΡ  should be 

subjected to migration and mortality during year 1−t  in two ways. First, migration and mortality 
affect the number of women in child-bearing ages during the fraction of year before they give 
birth. Second, the children at age zero are subjected to migration and mortality before year t  is 
reached. Alho deals with this issue by adding this uncertainty factor the fertility, taking  
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In addition, Alho defines )(tV  as the error component due to mortality and migration used to get 
from jump-off year to forecast year t , by 
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Armed with these assumptions, the author moves to calculate the different variances. The author 
applies the methods developed in Alho and Spencer (1991) of using a Taylor series development. 
The covariance between births in the year t  and in the year u , 161 ≤≤≤ ut , is given by (see 
Appendix A section A.4) 
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That means that the variance is given by  
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where 6/)1)(12()( ttttg ++= . 
Next, Alho considers the second generation of births and their survival. That is when the births 
generated during the first 16 years contribute new births, 3217 ≤≤ t . The contribution of the 

jump-off population, mortality and migration to the uncertainty of ),0(
~

tp  is )(tVeJO + . 

The contribution of fertility, however, consists of two parts. First, there is the direct contribution 
of fertility. Second, the women at the child-bearing ages who were born after the jump-off year 
contribute to the uncertainty of fertility. This contribution is given by 
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Alho considers two types of covariances. First, for 32161 ≤≤≤≤ ut , (see Appendix A section 
A.4) 
 

+++++++=





 2222

~~

6/)1)(1(),0(),,0(cov ftsvmgJO ttttutuptp σσσσ  

       { }jutujt

u

j
ft −−ΒΡ ∑

−

=

1,min),(),0(
1

2

15

2σ  

 
And for 3217 ≤≤≤ ut  this covariance is given by (see Appendix A section A.4) 
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That indicates that the variance is given by 
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Alho finally presents formulas for the covariances for the third generation of births, i.e. the years 
48,...,33=t . The formulas and their derivation are shown in Appendix A section A.4. 

Bell (1997) discusses forecasting mortality and fertility rates using two general approaches. First, 
the author describes the curve fitting approach. Second, a principal component approach is 
discussed. 
The curve fitting approach can be described as follows. Let ),( tjr  be an observed fertility or 

mortality rate or transformation of them for age lj ,...,1=  and year Tt ,...,1= . The ),( tjr ’s are 

approximated by a parametric curve, ),( tjh Θ , where tΘ  is a 1×m  vector of curve parameters. 

The parametric curve ),( tjh Θ  is used for every year, but with different values of tΘ  every 

year. The curve is fitted to data separately for each year t  by least squares by finding tΘ  that 

minimizes ( )
2

,(),(∑ Θ−
i

tihtir . The calculated tΘ  are considered as observations on an m-

dimensional multivariate time series and forecasted. The forecast sT +

∧
Θ  of sT +Θ  for 0>s  

produces forecasted curves ),( sTjh +

∧∧
Θ , which are taken as forecasts for ),( sTjr + . 

The author discusses next a principal component approach. A linear combination is defined by a 

vl ×  matrix 'C , lv ≤ . Given 'C  the rate )(tr  is approximated each year by )(
^

' tC β , where 

)(
^

tβ  is obtained by Least Squares regression of )(tr  on 'C . The )(
^

tβ ’s are then viewed as a v-

variate time series, which can be forecasted. The forecast of )( str +  is then given by 

)(' stC +
∧
β . The columns of 'C  are the first v  principal component vectors of the sum of 

squares and cross products matrix of the data )()( ' trtr
t
∑ . 

Section 3.6 discusses purely stochastic models for forecasting vital rates. Sykes uses stochastic 
versions of the Leslie matrix by introducing random vectors, assuming a Branching Galton-
Watson process, and by introducing random matrices. Lee (1974) uses four different time series 
formulations to forecast births. Lee and Carter (1992) forecast mortality with the Lee-Carter 
method which incorporates regression models and time series analysis. Alho and Spencer (1991) 
provide variance formulas for the jump-off population and the vital rates using a Taylor series 
expansion. Alho (1992a,1992b) presents formulas for the variances of the first, second and third 
generations of births using a Taylor series expansion, after making assumptions about errors in 
vital rates. Bell describes methods for forecasting mortality and fertility rates based on the curve 
fitting approach and the principal component approach. 
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4 Results and findings 
 
In this chapter the results and findings of the research are discussed. The chapter consists of two 
sections. Section one considers the direct applications of the Bootstrap, while section 2 describes 
the partial applications of the Bootstrap in probabilistic models of population projections.  

4.1 Direct applications of the Bootstrap in probabilistic models of 
population projections 
 
Lee and Carter (1992) make a direct application of the Bootstrap to estimate ))(var( jdε  (see 

section 3.6.2). First, the authors bootstrap the residuals of the original fit for the model of the 
observed data. Second, new data are created by adding the bootstrapped residuals to the matrix 
( ) ( ),.)(ln),(ln jmtjm − . From these new data a new fit is made and )( jd  is re-estimated. This 

procedure is repeated 400 times. The variance of )( jd  is calculated from the resulting 
distribution. 

4.2 Indirect applications of the Bootstrap in probabilistic models of 
population projections 
 
The method used in Pflaumer (1988) is a simulation process, but bears a resemblance to the 
parametric Bootstrap. A parametric distribution is used, the uniform distribution. Instead of 
drawing random samples from the distribution, random draws are made from the distribution 
assumed. The random draws are used to project the population forward. This procedure is 
repeated Μ  times. The result is Μ  projected populations at the target year. The distribution of 
the generated projected populations is used to produce confidence intervals. 
In Lutz et al. (1996) the authors make an indirect application of the parametric Bootstrap. A 
standard normal distribution is assumed. Unlike the parametric Bootstrap, no samples are drawn 
from the distribution. The authors, however, make random draws from the standard normal 
distribution, and use the random draws to estimate the vital rates. The vital rates estimated are 
used to project the population. This procedure is repeated 1000 times creating a distribution of 
projected population. This distribution is used to construct confidence intervals. 
The methods mentioned in Alho (1990) bear a small similarity to the Bootstrap. Using the 
Finnish fertility data in 1776-1976, the author calculates the volatility of fertility (see section 3.5). 
No re-sampling is made, but instead the author uses the data set itself to create percentiles. Those 
percentiles are then used to create confidence intervals.  
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5 Summary and conclusions 

5.1 Summary 
 
The report starts with explaining the Bootstrap. First, the Bootstrap estimate of standard error was 
discussed. Second, the Bootstrap confidence interval was described. Third, the Bootstrap t-
interval, the Bootstrap percentile interval, and the Bootstrap aBC  interval were explained. 

Finally, Bootstrap types and Bootstrap applications in regression and time series analysis were 
viewed. 
Before discussing the probabilistic models of population forecasts the data sources and the 
deterministic model were mentioned. The literature used in this paper was mentioned. Next, the 
deterministic model and the Leslie matrix were described.  
The probabilistic models of population forecasts based on Ex-post analysis were described. First, 
the model explained in Keyfitz (1981) was described. This was followed by a description of the 
model mentioned in Stoto (1983).  
The next step was the discussion of models for aggregate time series. First, the model discussed 
in Cohen (1986) was described. Second, the model discussed in Pflaumer (1992) was viewed. 
Furthermore, the models of probabilistic population forecasting that are based on a mix of 
statistical modelling and expert judgement were viewed. First, the approximately linear models 
mentioned in Alho and Spencer (1985) were described. Second, Pflaumer’s simulation 
procedures as explained in Pflaumer (1988) were discussed. Third, Alho’s methods of modelling 
the vital rates incorporating expert judgement discussed in Alho (1990) were explained. Fourth, 
Lee’s application of the Lee-Carter method mixed with expert judgement to forecast fertility as 
explained in Lee (1993) was described. Fifth, the random scenario model mentioned in Lutz et al. 
(1996,1997) was explained. Finally, the development of the random scenario model discussed in 
Lutz et al. (2001) and the conditional probability forecasting methods mentioned in Sanderson et 
al. (2003), were considered. 
Finally, probabilistic models of population forecasts solely based on stochastic modelling were 
discussed. First, the theories of population projection mentioned in Cohen (1977), Heyde and 
Cohen (1985), and Tuljapurkar (1990) were described. Second, stochastic models for forecasting 
vital rates were discussed. These include Lee’s ARIMA models for forecasting the number of 
births discussed in Lee (1994), the Lee-Carter method explained in Lee and Carter (1992), and 
the methods mentioned in Alho and Spencer (1991), and Alho (1992a, 1992b) for forecasting the 
vital rates. Finally, the curve fitting approach and the principal component approach mentioned in 
Bell (1997) were briefly discussed. 
 

5.2 Conclusions 
 
This report tries to establish whether the probabilistic models of population forecasts can be 
viewed as an application of the Bootstrap. This is done by describing the probabilistic models of 
population forecasts in detail, and noting when there is a resemblance with the Bootstrap. 
The only direct application of the Bootstrap in the probabilistic models of population forecasts 
was found in the Lee-Carter method. Lee and Carter (1992) bootstrap the residuals of a regression 
model used to estimate the central death rate. The bootstrapped residuals are then used to re-
estimate an age-varying constant. This procedure is repeated 400 times, and the variance of the 
age-varying constant is estimated from the resulting distribution. This variance formed part of the 
variance of the prediction error of the central death rate. This is a direct application of the 
Bootstrap to estimate the standard error. 
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Other probabilistic models of population forecasts apply methods bearing similarities to the 
Bootstrap, including the model mentioned in Pflaumer (1988). Although using a simulation 
process, Pflaumer makes random draws from an assumed uniform distribution for the vital rates. 
The random draws are then used to project the population forward to a specified target year. This 
procedure is repeated Μ  times resulting in a distribution for the projected population at the 
target year. This distribution is then used to create confidence intervals. 
In spite of not being a direct application of the Bootstrap, this method resembles the parametric 
Bootstrap. A parametric distribution is assumed, and a distribution is created from which 
confidence intervals are created. The simplification being not drawing random samples from the 
assumed parametric distribution 
Another probabilistic model resembling the Bootstrap is the random scenario model mentioned in 
Lutz et al. (1996). The authors assume a standard normal distribution, and make random draws 
from the assumed distribution. These draws are used to estimate vital rates, and based on the 
estimated vital rates the population is projected. Repeating the procedure 1000 times, a 
distribution of the projected population is created, and confidence intervals are constructed from 
the this distribution.  
This is not a direct application of the Bootstrap, but it bears similarities to the parametric 
Bootstrap. As in Pflaumer (1988) a parametric distribution is assumed without drawing random 
samples from it, and random draws from the distribution are used to estimate vital rates and to 
project the population. 
The last probabilistic model for population forecasts found to resemble the Bootstrap is that 
mentioned in Alho (1990). After calculating the volatility of the Finnish fertility 1776-1976, the 
author uses the percentiles of the empirical distribution of the volatility to estimate the error in 
fertility forecasts. The estimated error is then used to create confidence intervals. Although there 
is no re-sampling done, the method resembles the Bootstrap. The resemblance originates from the 
use of percentiles to create confidence intervals.  
A natural suggestion for new applications of Bootstrap methods in probabilistic models of 
population forecasting is to fully apply the Bootstrap in the models using methods bearing 
similarities to it. Instead of making random draws from the uniform distribution as in Pflaumer 
(1988), random samples can be drawn from the distribution and the mean rate calculated each 
time. The process can be repeated sufficient times, and a standard error of the rate can be 
calculated. After estimating the rate, e.g. by taking the mean of all means of Bootstrap samples, 
the estimated rate can be used, together with the standard error estimated to produce population 
projections along with confidence intervals. This same procedure may be applied to the random 
scenario approach as described in Lutz et al. (1996). In Alho (1990), the volatility estimates can 
be bootstrapped sufficient times and each time the mean or median is calculated. From the 
calculated means or medians a standard error can be estimated and used, along with the estimated 
rate, to create confidence intervals for fertility and, hence, for future populations. 
Another idea would be to adapt Bootstrap methods when there is regression analysis or time 
series analysis of vital rates involved. When dealing with regression analysis bootstrapping 
residuals or bootstrapping pairs can be considered. If a time series is considered bootstrapping 
residuals or the moving blocks Bootstrap method could be used. 
Bootstrap methods may further be incorporated in the probabilistic models for population 
forecasts based on Ex-post analysis. The projection errors can be bootstrapped and the mean error 
or the RMS (root mean squared error) can be calculated each time. The process can be repeated 
sufficient times and the standard error of the mean error or the RMS can be calculated. This 
standard error can be used as a forecasting error to construct confidence intervals for future 
population projections. The same procedure can be applied to Stoto’s jump-off error and random 
error, as well to Keilman’s percentage error. 
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