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A.1 Derivation of formulas in section 3.6.2 for Sykes (1969) 
 
The formula for ( ))(var tΡ  for the additive errors model can be derived in the following way 
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That indicates that ( ))(var tΡ  is given by 
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For the Branching process formulation Sykes suggests using a conditional argument. The 
expectation can be given by 
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The conditional variance formula is given by 
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Applying the conditional variance formula leads to 
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( ) ( ) ( )[ ] ( )( )2)()()()(),(cov tEtEtEttaa ii ΡΑ−
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Sykes’ third approach is that of the random transition matrix. The author introduces the model 
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where )(tΚ  is a sequence of independent ll ×  matrix random variables satisfying ( ) 0)( =Κ tE , 

and ( ) Σ=Κ )(var t , with Σ  is a singular 22 ll ×  matrix. To find ( ))1( +Ρ tE  and ( ))1(var +Ρ t  
Sykes uses the conditional mean to obtain the expectation as follows 
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Sykes makes use of the conditional variance formula to calculate the variance as follows 
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      ( ) ( ){ })(|)()()1( tttVartVar ΡΡΚ+Α=+Ρ  
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where the curly brackets indicate that expression inside them is the thij  element of the matrix 
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Writing out Ο  gives 
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A.2 Derivation of the formula of )(td in section 3.6.2 for Lee (1974) 
 
Equation 3.2.1 can be written in the following way 
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Based on earlier results Lee ignores the last term and approximates )(td  by the following AR 
process 
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A.3 Derivation of formulas in section 3.6.2 for Alho and Spencer (1991) 
 
The covariance between the prediction error of population size in ages i  and j  at time t , 

ljit ≤≤≤≤1 , is given by 
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The Taylor series expansion used by Alho and Spencer (1991) can be described as follows. 
Consider the function 
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Alho and Spencer apply Taylor series expansion by taking 
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The covariance between the jump-off populations at two different times is given by 
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it follows that, using the independence assumption between the jump-off population and vital 
rates and between fertility and survival rates,  
 

∑∑
= =

++−+−ΒΒ






ΡΡ≈
44

15

44

15

~~

))0,1(),0,1()(cov(,(),(),0(),0(
1),,0,0(

i j

ujptiptjtjututσ  

))1,(),1,(cov(),1(),,1(cov
~~2

0

~2

0

~

−−+++−++− ∑∑
−

=

−

=

ujfttiftnnujsvmmtisv
t

n

t

m

 

Therefore, ),,0,0( utσ  is given by 
 

∑
=

∑
=

++−+−ΒΒ






ΡΡ≈
44

15

44

15
)1,1()(,(),(),0(),0(

1),,0,0(
i j

ujtitjtjutut σσ

))1,1,,(),,1
2

0

2

0
,1( −−+++−∑

−

=
∑
−

=
++− utji

ft
nmnuj

t

m

u

n
mti

sv
σσ  

 

For the surviving births, [ ] tijt <≤≤−16,0max , 
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Using the Taylor series expansion explained earlier 
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 (A.3.1) 
 
Alho and Spencer set the covariance between the survival rates of the mothers giving birth at time 
t  and the survival rates of their own mothers (17 or more years earlier) to zero, leading to the 
cancellation of the last term in the formula above. 
The covariance between the surviving births in age i , tit <≤− }16,0max{ , at time t  and the 

survivors of the jump-off population at age j  at time u  ( )ju ≤  is given by 
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Using Taylor series expansion, ),0(
~

itp −  can be written as  
 

∑
=





 −Β−−Β−Β







−Ρ+−≈−
44

15

~~

)),(log()),(log(),(),0(
1),0(),0(

k

itkitkitkititpitp

 
with 
  








 −−++++−+++−=−Β ∑
−−

=

)1,(),1()0,1(exp),(
~2

0

~~~

itkftrritksvitkpitk
it

r

  

 
Therefore, the covariance between the surviving births in age i  at time t  and the survivors of the 
jump-off population at age j  at time u ( )ju ≤  can be given by 
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Alho and Spencer set the covariance between the errors in the jump-off population and the errors 
in births of the mothers giving birth at time t  to zero. The authors also set the covariance between 
the errors in the fertility forecasts for year 1−t  and the past births to zero. These simplifications 
lead to the cancellation of the last term in A.3.2. 
 

A.4 Derivation of formulas in section 3.6.2 for Alho (1992a) and Alho 
(1992b) 
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where 6/)1)(12()( ttttg ++= . It follows that  
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Using a Taylor series expansion, the covariance between births in the year t  and in the year u , 
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It follows that  
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First, for 32161 ≤≤≤≤ ut , 
 
Next, Alho considers the second generation of births and their survival. That is when the births 
generated during first 16 years contribute new births, 3217 ≤≤ t . The contribution of the jump-

off population, mortality and migration to the uncertainty of ),0(
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tp  is )(tVeJO + . 
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The contribution of fertility, however, consists of two parts. First, there is the direct contribution 
of fertility. Second, the women of the child bearing ages who were born after the jump-off year 
contribute to the uncertainty of fertility. This contribution is given by 
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Alho considers two types of covariances. First, for 32161 ≤≤≤≤ ut ,  
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The last covariance term is given by 
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And for 3217 ≤≤≤ ut  this covariance is given by 
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The covariance terms are given as follows 
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Alho considers the third generation of births, i.e. the years 48,...,33=t . Again the authors splits 

the contribution of fertility into direct and indirect parts. The direct part is )(tftε . The indirect 

part is given by 
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A.5 Theorems of population projection 
 
This section discusses theorems of population projection. First, theorems developed by Cohen 
(1977) are described. Second, the theorems of Heyde and Cohen (1985) are viewed. This is 
followed by a discussion of results presented in Tuljapurkar (1990). 
Cohen (1977) developed the ergodic theorems of demography. Given certain assumptions about 
the projection matrix, )(tΑ , ergodic theorems describe the long run behaviour of population size, 

)(tΡ , and of age structure, )(tq , and show that the behaviour of these quantities is independent 
of the initial conditions. 
Cohen starts with a set of assumptions. First, the author assumes a finite number of age classes, l . 
Second, he considers a population subjected only to birth and death, with no immigration or 
emigration. Third, only one sex is considered, human females, and the vital rates refer to birth and 
death rates. It is further assumed that the age-specific vital rates apply to all individuals in an age 
class uniformly and equally. Finally, Cohen considers only large populations. 
The author presents next a set of definitions. Cohen defines )(tΡ  as a non-negative vector 

representing the age census at time t , with ),( tjΡ  representing the number of females at time t  

who will be j  years old at their next birthday. The age structure, )(tq , of an age census )(tΡ  is 

given by ||,)(||/)( tt ΡΡ  with 1||)(|| =tq . Furthermore, )(tΑ  is defined as a sequence of 

operators mapping the non-negative −l vectors at one time to the non-negative vectors at the 
next time. In other words, Cohen considers the model 
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    )()1()1( ttt Ρ+Α=+Ρ , ,...1,0=t     (A.5.1) 
 
More assumptions follow. The author assumes that each )(tΑ  is a linear operator, represented by 

a ll ×  matrix, where the ratio of the smallest positive element of )(tΑ  to the largest element of 

)(tΑ  is not less than 0>ν . This means that the set of all projection matrices, C , is an ergodic 

set of matrices. In addition, every element of rΑ  is positive, i.e. every product of every r  
matrices from C  is positive. 
Cohen presents next the strong ergodic theorem. Letting Α  be a ll ×  primitive matrix, then the 
eigenvalue of Α , λ , has an algebraic multiplicity one, and geometric multiplicity one. 
Furthermore, λ  is real and positive. Defining 1v  and 2v  as the left and right eigenvector 

respectively, then ( ) 21
'/)(lim vvt t

t
=Α

∞→
λ , where 1v  and 2v  are scaled so that 112

' =vv . Letting 

Ct ∈Α=Α )( , and 0)0(',0)0( ≠Ρ≠Ρ , )0(')0( Ρ≠Ρ , be two non-negative non-zero and 

different age censuses, this leads to )0()( ΡΑ=Ρ tt  and )0()( '' ΡΑ=Ρ tt . Then 
 

    ( ))0(/)(lim 2
'

1 Ρ=Ρ
∞→

vvt t

t
λ  

 
In addition 
 

    ||||/)(lim)(lim 11
' vvtqtq

tt
==

∞→∞→
 

 
The author makes the following remarks. The eigenvalue λ  is called the stable growth rate per 
unit of time. The Malthusian parameter or intrinsic rate of natural increase is defined by )log(λ . 

The stable age-structure is defined by ||||/ 21 vv . The strong ergodic theorem asserts that )(tΡ  

and )(' tΡ  grow at the same rate, and that the age structures )(tq  and )(' tq  approach the same 
limiting age structure. 
Next, the author presents the weak ergodic theorem. If ),...2(),1( ΑΑ  are projection matrices, 

repetition possible, and )0(Ρ  and )0('Ρ  are two different initial age censuses, implying that 
 
    )0()1(),...,()( ΡΑΑ=Ρ tt , and  
 

    )0()1(),...,()( '' ΡΑΑ=Ρ tt  
Then 
 

    0||)()(||lim ' =−
∞→

tqtq
t

 

 
That means that regardless of the initial age-structure the vital rates in the matrix Α  determine 
the current age-structure. 
The weak stochastic ergodic theorem follows. If the sequence of projection matrices applied to 

)0(Ρ  is a sample path of a Markov chain, then the joint process consisting of )(tΑ  and )(tq  is a 

Markov chain with transition function )(tG  given by 
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   { })(),(|)1(,)1(Pr)( tqtDtqCttG Α∈+∈+Α=  
 
Suppose that the projection matrices are chosen from an ergodic set of projection matrices, and 
that the Markov chain is S-uniformly ergodic . Then the Markov chain ( ))(),( tqtΑ  is uniformly 

weakly ergodic in the sense that for every origin of time, and for every 0' >δ , and for every 
measurable set C  of projection matrices and every measurable set D  of age-structures, there 
exists an integer 0a  a such that for all 0aa >  

 

( ) ( )
( ) ( ) )1(),1(|),()(),(Pr[)],()1(),1(|),()(),(Pr[|sup

'' ,,,

qDCaqaqqDCaqa
qAqA

Α∈Α−Α=Α∈Α

''' |)],( δ<Α= q  
 
This means that the joint distribution of the current projection matrix and current age structure, 
( ))(),( tqtΑ  becomes independent of the initial projection matrix and initial age-structure after a 
long time, uniformly with respect to initial conditions. 
Finally, Cohen discusses the strong stochastic ergodic theorem. This theorem can be translated 
into practice as follows. When the set C  contains a finite number of projection matrices, and the 
Markov chain on C  is homogenous and regular, the long run rate of growth of the expected 
population size is the dominant eigenvalue of a certain matrix. The long run age-structure of the 
expected population maybe calculated from the dominant eigenvector of this matrix. Technically, 
the theory states that when the Markov chain on Α  is homogenous, i.e. when the probability of 
transition from one projection matrix to another is constant in time, the joint distribution )(tF  of 

the current ( ))(),( tqtΑ  approaches a limiting invariant probability distribution, F , which is the 
solution of  
 

    ∫ ΑΑ= ),,,)(,(),( DCqdqdFdCF  

 
Equipped with these theorems, Cohen suggests a scheme for using historical data in population 
projection. The scheme starts with arranging all age-specific effective fertility and survival rates 
in a projection matrix into a vector. Then a linear first order auto-regressive model (see Appendix 
B section B.1.2) should be fitted to historically observed sequences of such vectors. The initial 
vital rates and the estimated parameters are used to project future vital rates. The distribution of 
future vital rates, given an initial age-structure, implies a distribution of the projected subsequent 
age-structure and population sizes. 
Heyde and Cohen (1985) also established three theorems for population projections. The analysis 
is based on vital rates that vary stochastically in time. The authors consider the model 
 
    )()1()1( ttt ωωω Ρ+Α=+Ρ , 

 
where )(tΡ  is a vector of the number of individuals in each age class at time t , Α  is the matrix 

of vital rates, and ω  refers to a particular realization of the process that produces the vital rates.  

Heyde and Cohen proceed with a set of definitions and assumptions. Letting ),...2(),1( ΑΑ  be a 

stationary ergodic random sequence of ll ×  matrices with non-negative elements, this sequence 
of matrices satisfies two conditions. First, there exists an integer a  such that any product 
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)1()...( +Α+Α iai  of the matrices has all its elements positive with probability one. Second, for 

another constant b , ∞<< b1 , and each matrix )(iΑ , it follows that 
 
    ( ) ( ) bii ≤ΑΑ≤ )(min/)(max1    
 
Furthermore, The authors define the concept of uniform mixing as follows. Assuming that 

),...2(),1( ΑΑ  are defined on a probability space [ ]P,,℘Ω  (Billingsley 1995, pp. 23), and u
t℘  is 

the field−σ  (Billingsley 1995, pp. 20) generated by )()...( ut ΑΑ , and letting  
 

,2,1|;)2Pr()1|2Pr(sup(|)( ∞
+∈℘∈℘−= ni

i
o EventEventEventEventEventnϕ  

)0)1Pr( >Event , 
 
for two events 1Event  and 2Event . Then the condition 0)( →nϕ  as ∞→n  is called 
uniform mixing. 
Next, the authors present the first theorem. Supposing that the stationary ergodic sequence of 
matrices satisfies the two conditions mentioned above, and that ( ) ∞<Α |)1(max(log|E , then 

for all kji ≤≤ ,1  
 

    ( ) )log()1()...(log
..

1 λ
sa

ijtt →ΑΑ− ,     (A.5.2) 

 
where λ  is a finite constant as ∞→t . In addition, if  
 

( ) ∞<Α 2|)1(log|E ,     (A.5.3) 
 
and  
 

    ∞<∑
∞

=1

2/1|)(|
n

nϕ       (A.5.4) 

 
then 
 

  ( ) 2/12/1 )2(|log)1()...(log|lim πσλ =−ΑΑ−

∞→
ttEt ijt

 

 
exists for ∞≤≤ σ0 . If 0>σ , then 
 

   ( ) ( )[ ] )1,0(log)1)...((log
2/12 Ν→−Α− d

ij ttt λσ , 

 
as ∞→t . 
Heyde and Cohen proceed with the second theorem. Letting )()1()1( ttt Ρ+Α=+Ρ , 0≥t , and 

( ))(,)( '' tatW Ρ= , where 'a  is a non-zero vector of non-negative elements, then 
 

    )log()(loglim '1 λ=−

→
tWt

t
 a.s. 
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and if (A.5.3) and (A.5.4) hold then 
 

   ( ) 2/1'2/1 )2(|)log()(log|lim πσλ =−−

∞→
ttWEt

t
 

 
exists for ∞≤≤ σ0 , and if 0>σ , then 
 

   ( ) ( ){ } ),1,0()log()(log '2/12 Ν→−− d

ttWt λσ  
 
as ∞→t . 
Finally, the authors present a third theorem. If (A.5.1), (A.5.2) and (A.5.3) hold, then 
 

  ( ) ( ) 2/12/3

1

'1 )2(|)(log)(log|log πσλ
pt

i

iiiWt →− −
∧

=

− ∑ , 

 

as ∞→t , where ( ))(log)log( '1 tWt −
∧
=λ . 

The authors propose confidence intervals for the growth rate and total population size. Usually, 

)(' tW  is the population size, )(tW , given by ( ))(,)( ' tetW Ρ= . An approximate )%1(100 α−  

confidence interval for the growth rate )log(λ  is given by 
 

    ( ) 2/1
2/

1 )(log −
∧

− ± tztWt σα  

 
In practice, the actual generation numbers at times Tt ,...,1=  will usually be unknown. The 

difference from 1=t  is used instead. This results in the following formula for )log(
∧
λ  

 

( ))1()(log)1()log( 1 WW −Τ−Τ= −
∧
λ , 

 

and this formula for 
∧
σ   

         

 ( ) ( ) ( ) ( ) |)log()1(log)1(log|1log(2/
1

1

2/312/1
∧−Τ

=

−−
∧

−−+−Τ= ∑ λπσ iWiWi
i

 

 
(For the confidence interval for the population size and its derivation see section 3.4.) 
Tuljapurkar (1990) added more results to the theories mentioned above. The author developed the 
new results based on random matrices products, and on random vital rates. 
The author starts with a three assumptions. First, the demographic weak ergodicity theory holds. 
Second, the random process generating vital rates is stationary and ergodic. Third, the logarithmic 
moment of vital rates is bounded. With { })log(,0max)(log xx =+ , and ||.||  any matrix norm, 
this translates to  
 

∞<Α+ ||)1(||logE  
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This set of three assumptions is to be called assumptions set one. 
The first result concerns the long run growth rate. The long run growth rate of the log of total 
population, or any part of the population, is almost surely given by a number, )log(λ , 
independent of the initial population vector. This number is given by 
 

    ( ){ }tta
t

/)(,loglim)log( '' Ρ=
∞→

λ , 

 

where ''a  is a vector of bounded non-negative numbers.  
Tuljapurkar’s next result concerns age-structure. Starting from every initial age-structure, )0(q , 
the population converges to a time dependent stationary random sequence of structure vectors, 

)(tq
∧

, which are independent of )0(q . There is a stationary measure describing the probability 
distribution of the joint sequence of vital rates and population structure vectors 
{ })...2(),2(),1(),1( qq ΑΑ .  
 
The following result concerns the growth rate. There are constants ic , ki ,...,1= , such that  

 
 ...)log( 21 ≥≥= ccλ  
 
The constants ic  are determined by growth rates the exterior powers of the Α ’s (Lang 1984). 

Before proceeding with the next result, the author makes a new assumption. It is assumed that the 
random process generating vital rates can be run backwards in time, creating a unique time-
reversed process that is stationary and ergodic. Tuljapurkar then considers the adjoint time-
reversed process associated with 
 

   ( ))1()(,/)1()()( ''''' +Α+Α= tQtetQttQ     (A.5.5) 
 
Then A.5.5 runs backwards in time through decreasing values of t , and as −∞→t , the resulting 

vectors )(' tQ  converge to a stationary random sequence of vectors )(
'

tQ
∧

. 
The following result is about the asymptotic distribution of total population size. With 
assumptions set one still holding, it is further assumed that the random process generating vital 
rates is rapidly mixing (king 2003), to be called assumption two here. Then the total population 

size at time t , ( ))(,)( ' tetW Ρ= , is asymptotically distributed as log normal. In other words 
 

   ( ) ( ){ } )1,0(//)log()(log Ν→− tttW σλ , 
 
for some σ . (Tuljapurkar refers to Hedye and Cohen (1985) for methods for estimation of σ .) 
The author proceeds with the joint distribution of the vital rates and population structure. First, 
assumptions set one and assumption two still hold. Second, it is assumed that the vital rates 
follow a countable state Markov process. Then, there is a joint probability distribution of vital 
rates and population structures given by 
 
   { }DtqCtDCtF ∈∈Α= )(,)(Pr),,(  
 



 62 

As ∞→t , F  converges to an equilibrium distribution, say ),(
*

DCF .  
Equation A.5.1 can be written in terms of the age structure in the following way 
 

    ( ))()1(,

)()1(
)1(

' tqte

tqt
tq

+Α
+Α=+ , 

 

using the fact that ( ))()1(,
)(

)1( ' tqte
tW

tW +Α=+
. Tuljapurkar (1990) argues that the average 

growth rate can be computed as the average one-time step growth rate given by  
 

    ( ))0()1(,log)log( ' qeE Α=λ  
 
Tuljapurkar considers next the moments of the population vector. It is first assumed that the vital 
rates follow a finite state Markov process. Then the moments of the population vector and its 
tensor powers, ( ) ( ),...)()()(,)()( tttEttE Ρ⊗Ρ⊗ΡΡ⊗Ρ , can be computed explicitly as a 

function of time. Given the basic model )()1()1( ttt Ρ+Α=+Ρ , the average population vector is 
given by 
 
   ( ) ( ) ( ) ( )1()()1()()( −ΡΑ=−ΡΑ=Ρ tEtEttEtE , 
 
where )(tΡ  is independent of the history of the population. The second moment 

( ))1()1( +Ρ⊗+Ρ ttE  is given by 
 

( ) ( ) ( ))()1()()1()1()1( ttttEttE Ρ+Α⊗Ρ+Α=+Ρ⊗+Ρ   

             ( )( ))()()1()1( ttttE Ρ⊗Ρ+Α⊗+Α=  

           ( ) ( ))()()1()1( ttEttE Ρ⊗Ρ+Α⊗+Α=  
  
Higher moments are driven in an analogous manner. 
Tuljapurkar’s final result concerns the probability distribution of the age-structure. One more 
assumption to be added is that the I.I.D. model determines the random vital rates. (Under the 
I.I.D. model the entries of the )(tΑ ’s are chosen randomly for each t  from the same fixed 
distribution. There is no serial correlation between vital rates at different times, but rates within 
each period can be correlated. The number of possible environments can be finite or infinite, with 
the environment being totally unpredictable.) Then, there is a probability distribution for the 
population structure vector given by 
 
    ( ) ( )DtqDtG ∈= )(Pr, , 
 

and a corresponding stationary distribution, )(
*

DG , to which ( )DtG ,  converges as t increases. 
Armed with these theorems, Tuljapurkar suggests the following method for population projection. 
The random rates model leads asymptotically to simple exponential growth model described by 
the lognormal theorem. If the assumptions are satisfied for a set of historical data, projections can 
be made by estimating the parameters )log(λ  and σ . For )log(λ  Tuljapurkar suggests using 
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   { } )1/())1()(log(log −−=





 ∧

TWTWλ  
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B.1 Time series analysis 
 

B.1.1 General theory 
 
A time series is a stochastic process where the time index takes on a finite or countably infinite 
set of values. The general expression for a time series is given by  
 

( ))(),...,2(),1()( ttytyfty ε−−= , 
 
where )(tε  is a disturbance term. The functional form f , number of lags and a structure for the 

disturbance term must be specified. The functional form can be the general thp  order auto-
regressive process expressed by 
 
   )()(...)1()( 1 tptytyty p εαα +−++−=  

 
If )(tε  is assumed to be white noise, then the process is called a pure AR(p) process. The 
disturbance term is said to be white noise if  
 

( )
( )

( ) ufor t,0)()(

  tallfor ,)(

0)(

'

22

≠=

=

=

utE

tE

tE

εε
σε

ε
  

 
When the disturbance term is not assumed to be white noise, its usual specification is a moving 
average, MA(q), process given by 
 

)(...)1()()( ''
1

' qtttt q −−−−−= εβεβεε , 

 

where 'ε  is a white noise process. The MA(q) process assumes a more complicated structure for  
the disturbance term in the AR(p) process. The AR(p) process and the MA(q) process can be 
combined to form a mixed auto-regressive moving average ARMA(p,q) process given by  
 

)(...)1()()(...)1()( ''
1

'
1 qtttptytyty qp −−−−−+−++−= εβεβεαα  

 
There are three steps in ARMA modelling. First, the series should be checked for stationarity. 
Second, for purposes of estimation and testing an ARMA specification should be chosen. Third, 
from the preferred specification forecasts are calculated over a relevant time horizon. 
The process starts with checking stationarity. A stationary series has a constant unconditional 
mean at all points and a constant unconditional variance independent of time. Stationarity can be 
checked using unit root tests, e.g. the Dickey-Fuller test. If the series is found to be non-
stationary, it needs to be first differenced to yield a stationary one. The minimum number of time 
the series needs to be first differenced to give a stationary series is called the order of integration. 
An ARMA(p,q) which has order of integration u is denoted ARIMA(p,u,q). 
The next step is model specification. Choosing the order of p  and q  can be done using the 
method of Hannan and Rissanen (Johnston and Dinardo1997). 



 66 

Estimating the parameters of the model follows. This can be done using Least Squares or 
Maximum Likelihood methods. Two conditions must be satisfied though. First, the disturbances 
must be independently and identically distributed. Second, the series must be stationary. For MA 
models non-linear methods are called for. 
Once the parameters are estimated, forecasting can be carried out. Given that the observations on 
y  are available for periods 1 to T , forecasts are made based on information at time T . Let 

 
=+ )( sTy value of y  at period sT + , 0>s ,   

=+
∧

)( sTy forecasts of )( sTy + based on information available at time T , and  

=+ )( sTe )()( sTysTy +−+
∧

 
 

The forecast of )( sTy +  with the minimum mean squared error is the conditional expectation of 

)( sTy + , given information available at time T  (Hamilton 1994, pp. 73). 
 

B.1.2 The AR(1) process 
 
The AR(1) process is given by 
 

)()1()( 10 ttyty εαα +−+= , 

 
where )(tε  is white noise. Using the lag operator (Johnston and DiNardo 1997, pp. 206) the 
process can be written as  
 

...))2(()1()((...)1()( 2
11

2
110 +−+−+++++= tttty εαεαεααα  

 
It follows that 
 

  ( )
1

02
110 1

...)1()(
α

αααα
−

=+++=tyE  

 
The necessary and sufficient condition for the existence of the expectation is 11 <α , so that the 

y  series has a constant and unconditional mean independent of time, therefore stationary. For the 

variance of )(ty  consider 
 

( ) ...)2()1()()()( 2
11 +−+−+=− ttttyEty εαεαε  

 
This indicates that the variance of )(ty is given by 
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The variance of )(ty  is constant, unconditional and independent of time. The autocovariance is 
given by 
 

( )( )
2

1

2

11
1

))(()1())(()(
α

σαγ ε

−
=−−−= tyEtytyEtyE , 

 
and  
 

( )( ) ,
1

))(()())(()(
2

1

2

1 α
σαγ ε

−
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r tyErtytyEtyE  ,...2,1,0=r  

 
The mean, variance and covariance are all constants independent of time. The autocorrelation 
coefficients are given by 
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The estimation is done by OLS. The values of )1(y  are taken as given and summation run over 

nt ,...,3,2= . For forecasting write the AR(1) process as follows 
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with 11 <α , and )(tε  ... dii  with mean zero and variance 
2

εσ . Or  

 

)()1()1(
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0 ttyty εαα
α
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−
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As mentioned before the forecast minimizing the MSE is the conditional expectation of 

)( sTy + , given information available at time T . If it is assumed that observations on y  are 

available for periods 1 to T , then the forecasts are made conditional on information available at 
time T . Thus 
 

( ))(|)1()1( TyTyETy +=+
∧
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and )1()1( +=+ TTe ε , indicating that ( ) 2)1(var εσ=+Te . Similarly, )2( +Ty  can be 

written in the following way 
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Then  
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Proceeding the same way )( sTy +  can be written as  
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and the forecast error variance is given by 
 

( ) 2)1(2
1

4
1

2
1 ...1)(var εσααα −++++=+ ssTe  

 

As ∞→s , 
1

0

1
)(

α
α
−

→+
∧

sTy , and ( )
2

2

1
)(var

α
σ ε

−
→+ sTe . Therefore, as the forecast 

horizon increases, the forecast value tends to the unconditional mean of the process, and the 
forecast error variance tends to the unconditional variance of the process. 
 

B.1.3 Heteroscedacity and autocorrelation 
 
The aforementioned procedures are no more valid if the white noise assumption is violated which 
can be either due to heteroscedacity or autocorrelation. In the case of heteroscedacity Generalized 
Least Squares (GLS) can be applied (Johnston and DiNardo 1997, pp. 170). When the 
disturbances are autocorrelated, which can be a sign of incorrect specification of the model, the 
assumption of zero pair wise covariance does not hold.  
There are several tests for autocorrelation (Johnston and DiNardo 1997), but here the Durbin 
Watson test is discussed. Consider the following AR(1) formulation for the autocorrelation  
 



 69 

)()1()( ttt ξαεε +−= , 
 
where )(tξ  is white noise. The null hypothesis of zero correlation 0:0 =αH  is tested against 

the alternative hypothesis 0:1 ≠αH . The Durbin Watson statistic is computed from the vector 

of Ordinary Least Squares (OLS) residuals βΧ−Υ . The test statistic is given by 
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For large n  this reduces to )1(2
∧

−≈ αDW , where 
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is the coefficient in the OLS regression of )(te  on )1( −te . Ignoring end-point discrepancies 
∧
α  

can be seen as an approximation to the simple correlation coefficient between )(te  on )1( −te . 

That indicates that the value of DW will be less than two for positive autocorrelation, greater 
than two for negative autocorrelation, and approximately two for zero correlation. To test the 
hypothesis of zero autocorrelation against the alternative of positive first order autocorrelation, 
Durbin and Watson established upper and lower bounds for the critical values (Johnston en 
DiNardo 1997, pp. 181). 
In order to apply the Durbin-Watson test two conditions must be satisfied. First, the regression 
must include a constant term. Second, it is only valid for non-stochastic Χ  matrix, i.e. not when 
lagged values of the dependent variable are among the regressors. Durbin, however, derived a test 
for the case when lagged values of the dependent variable are among the regressors (Johnston en 
DiNardo 1997, pp. 182). 
Once a autocorrelation is suggested, estimation follows. The most common specification of 
autocorrelation is that of a first order autoregressive process. The AR(1) process is given by 
 
    )()1()( ttt ξαεε +−= , 
 
where )(tξ  is white noise. The necessary conditions for stationarity of the AR(1) are 1|| <α  , 

0))(( =tE ξ , 
2)(var( εσξ =t , and 222 1/ ασσ ξε −= . The autocorrelation coefficients, rρ , 

are given by  
 

 ...2,1,0, == rr
r αρ  

 
The variance-covariance matrix of )(tε  is given by 
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If α  is known GLS can be applied and the GLS estimate 
∧
β  of β  is given by  

 

    ( ) ΥΣΧΧΣΧ= −−−
∧

1'11'
GLSβ  

 

Alternatively, a matrix Ξ  can be found so that ΞΞ=Σ− '1 . The data can be transformed and 
OLS can be applied by regressing ΞΥ  on ΞΧ . Usually α  is not known and has to be estimated 

along with the 
∧
β . In this case Iterative procedures of estimation are called for (Johnston and 

DiNardo 1997, pp. 191).  
 

B.2 Branching Galton-Watson process 
 
This section discusses the Branching Galton-Watson process. The Branching Galton-Watson 
process is a class of Markov chain. It originated in 1847 with a mathematical model by Galton 
and Watson for the problem of extinction of family surnames. 
The Branching Galton-Watson process can be defined as follows. Starting with initial set of 

individuals, 0Ρ , these individuals are called the thzero generation. The offspring produced by the 
thzero generation forms the first generation, and the offspring produced by the first generation 

forms the second generation, and so forth. In general, the descendants of the thr  generation form 

the thr 1+  generation. The number of individuals in the thr  generation, ,...1,0=r , is a random 
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variable. Individuals are assumed to reproduce independently of other individuals. Let the 

probability that an individual produces i  similar individuals be iς , with ,...2,1,0=i , ∑
=

=
0

1
i

iς . 

Then the sequence ,..., 10 ΡΡ  constitutes a Galton-Watson branching process with offspring 

distribution iς . 

A concept associated with the Galton-Watson branching process is that of the probability 
generating function (PGF). Suppose that Ρ  is random variable assuming non-negative integral 

values ,...2,1,0  Suppose further that ( ) kk ς==ΡPr , ,...2,1,0=k , 1=∑
k

kς . Then the PGF 

with a variable kr , )(rG , is defined by 
 

)()(
0

k

k

k
k rErrG ==∑

∞

=

ς  

 

But ( ) ∑=Ρ
k

kkE ς , and ∑
∞

=

−=
0

1' )(
k

k
k rkrG ς . Therefore,  

 

( ) )1()(lim ''

1
GrGE

r
==Ρ

→
 

 

In a similar way it can be seen that ( ) )1()1( '''2 GGE +=Ρ , so that the variance of Ρ  is given by 
 

( ) ( )2'''' )1()1()1(var GGG −+=Ρ  
 

Note that ∑
−Ρ

=

=Ρ
1

1

n

i
in y , where iy  represents the number of offspring of the thi  individual of the 

thn )1( −  generation. The iy ’s are i.i.d. random variables with distribution iς .  

Define the P.G.F. )(rG  of iy  as ∑∑ ===
k

k
k

k

k
i rrkyrG ς)Pr()( , and let 

k

k
nn rkrG )Pr()( =Ρ=∑ , ,...2,1,0=n  The moments of the branching Galton-Watson process 

can be found using the P.G.F.  The first moment is given by µ=Ρ== )()()1( 11
' EyEG . The 

first moment can be derived as follows 
 
      [ ]1|)()( −ΡΡ=Ρ nnn EEE  









Ρ= −

Ρ

=
∑

−

1
1

|
1

n
i

i

n

yEE  

[ ]µ1−Ρ= nE  

[ ]1−Ρ= nEµ  

 
Suppose that 10 =Ρ . Then 
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       µ=Ρ )( 1E  

      2
12 )()( µµ =Ρ=Ρ EE  

          M   

      n
nE µ=Ρ )(  

 
The variance of the Branching Galton-Watson process is given by (Ross 2000, pp. 204) 
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When the population consists of a finite number of types of individuals the process is called a 
multi-type Galton-Watson process. Suppose that a population of individuals originates from a 

single ancestor and that there are l  types of individuals. Let ),...,( 1 l
w κκς  be the probability that 

an individual of type w , lw ,...,1=  produces jκ  offspring of type j , lj ,...,1= . The 

probability generating function of the multi-type Galton-Watson process is given by  
 

lrrrG l
ww κκκκς ...),...,()( 1

1∑=  

 

Let also ( ))()1( ,..., l
nnn ΡΡ=Ρ  represent the population size of l  types in the thn  generation. The 

expected number of offspring of type w  produced by an individual of type z , wzu , is given by  

 

    )1,...,1(
)(

w

z

zw r

rG
u

∂
∂=  

 

B.3 Linear interpolation 
 
A method of estimation and prediction of the value of a variable between two points is linear 
interpolation. Linear interpolation works by drawing a straight line between two neighbouring 
samples and returning the appropriate point along that line. Let ϖ  be a number between zero and 
one, representing how far it is intended to interpolate a value y  between time t  and 1+t . Then 

the linearly interpolated value )( ϖ+
∧

ty  is defined by 
 

)1()()1()( ++−=+
∧

tytyty ϖϖϖ  
 
 
 


