
 

 

Appraiser-based automated valuation: A case study of 

valuing buy-to-let properties in the Netherlands 

 

Master Thesis, MSc Real Estate Studies 

Faculty of Spatial Sciences, University of Groningen 

 

Date: 28-02-2022 

 

Author 

D.P.W. (Daan) van der Hoeven 

S3419630 

d.p.w.van.der.hoeven@student.rug.nl 

 

Supervisor 

M. (Mark) van Duijn 

mark.van.duijn@rug.nl 

 

Assessor 

A. J. (Arno) van der Vlist 

a.j.van.der.vlist@rug.nl 

 

Supervisor Envalue 

W. (Wessel) van Loon 

wessel.vanloon@envalue.com 

  



 2 

Abstract 

Automated valuation methodologies are valuable tools in complementing traditional valuation methods 

because of their potential in terms of accuracy, efficiency, and reliability. Concurrently, however, these 

methodologies lack sufficient explainability to be applied in valuation practice. This paper, therefore, 

proposes a valuation methodology incorporating appraiser expertise to investigate the potential in terms 

of accuracy, explainability, and reliability. We investigate the implementation of such a methodology 

in automating buy-to-let property valuations in the Netherlands. To do so, we compare the proposed 

appraiser-based methodology to other methodologies described in the forecasting literature. We 

compare these methodologies by forecasting the constituents of market value in the single period 

capitalization method: vacant possession value, market rent, and gross income multiplier using a unique 

dataset comprising buy-to-let property transactions in the Netherlands. Using transaction data on all 

three market value constituents, we find the proposed appraiser-based methodology to have slightly 

lower accuracy while having similar reliability and possessing more explainability compared to existing 

methodologies. 

 

Keywords: 

Automated valuation 

Machine learning 

Monotonic constraints 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Disclaimer: Master theses are preliminary materials to stimulate discussion and critical comment. The 

analysis and conclusions set forth are those of the author and do not indicate concurrence by the 

supervisor or research staff.  



 3 

Table of contents 

Glossary 

1. Introduction 

2. Valuation framework 

2.1 Valuation practice 

2.2 Market value 

3. Automated valuation methodologies 

3.1 Comparing methodologies 

3.2 Hedonic pricing model 

3.3 Random forest 

3.4 Gradient boosting 

3.5 Extreme gradient boosting 

3.6 Hybrid methodology 

3.7 Monotonic constraints 

4. Data 

4.1 Market and data sources 

4.2 Data enrichment 

4.3 Data cleaning 

4.4 Variable transformation 

5. Design 

5.1 Hyperparameter optimization 

5.2 Monotonic constraints 

5.3 Performance measurement 

6. Results 

6.1 Gross income multiplier 

6.2 Market rent 

6.3 Vacant possession value 

6.4 Overall comparison 

7. Conclusions and discussion 

Ethical considerations 

Literature 

Appendix 1: Envalue valuation firm  



 4 

Glossary 

Abbreviation Full form 

AI Artificial intelligence 

ANN Artificial neural network 

API Application programming interface 

AVM Automated valuation model 

AVS Automated valuation services 

BAG Basisregistratie adressen en gebouwen 

CART Classification and regression tree 

CV Cross-validation 

DLM Dynamic linear model 

DT Decision tree 

GB Gradient boosting 

GIM Gross income multiplier 

HPM Hedonic pricing model 

HTM Hierarchical trend model 

IQRat Inter-quartile range in ratios 

LMDPE Log median prediction error 

LRMSE Log root mean squared error 

MAE Mean absolute error 

ML Machine learning 

mmMAPE Max-min mean absolute prediction error 

mmPER Max-min percentage error range 

MR Market rent 

MV Market value 

NRVT Register of Real Estate Appraisers Netherlands 

RF Random forest 

RMSE Root mean squared error 

RICS Royal Institution of Chartered Surveyors 

SMBO Sequential model-based global optimization 

SPCM Single period capitalization method 

TPE Tree Parzen Estimator 

VPV Vacant possession value 

XGB Extreme gradient boosting 

XGBMC Extreme gradient boosting with monotonic constraints 
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1. Introduction 

Property valuations are valuable for various purposes in the real estate industry. Government agencies, 

for instance, get periodic property valuations for tax purposes, while financial institutions require 

property valuations for estimates of collateral value (IAAO, 2018). Traditionally, professional 

appraisers conduct these valuations manually. Using either the asset-based approach, cost approach, 

income approach, or market approach, professional appraisers estimate market value (MV), defined as 

the price resulting from an arms-length transaction between an informed and willing buyer and seller 

(IVSC, 2019: 18; TEGOVA, 2020: 27). Manual valuations, however, are time-consuming and expensive 

(Schulz et al., 2014). Because of recent developments in property data and computing power, property 

valuations are therefore shifting toward more automated methods (Jordan & Mitchell, 2015). Described 

as automated valuation models (AVMs), these methodologies provide an estimate of value using large 

amounts of property data (Schulz et al., 2014). AVMs can outperform manual valuations in terms of 

accuracy (Horváth et al., 2016), while also being more efficient and reliable (Kok et al., 2017).  

 Both econometric and machine learning (ML) methodologies are capable of the automated 

valuation of real estate (Kroon & Francke, 2021). Traditionally, econometric models are adopted for 

this purpose, such as the hedonic pricing model (HPM; see Malpezzi (2003), for an extensive overview). 

Although explainable and reliable, econometric models require a priori model specifications before 

parameter estimation, limiting their flexibility as an AVM (Robinson & Sanderford, 2017). In the 

presence of forecasting complexity, ML methodologies have more effective ways of modeling 

relationships (Varian, 2014). Specifically, ML methodologies do not require a priori model 

specification, as these methodologies search for a functional form and parameter values simultaneously 

(Mullainathan & Spiess, 2017). In contrast to parameter estimation, ML methodologies revolve around 

finding an optimal prediction, making them more accurate in forecasting purposes compared to 

econometric models (Breiman, 2001b; Ceyhan, 2017). Nguyen & Cripps (2001), and Peterson & 

Flanagan (2009), for example, compare HPM with artificial neural networks (ANNs; a ML model) and 

conclude ANNs to be more accurate. Other authors (Antipov & Pokryshevskaya, 2012; Zurada et al., 

2011) compare a wider range of econometric and ML models and argue ML models perform better when 

dealing with heterogeneous data. While these authors argue for the higher accuracy of ML models, most 

of these (non-parametric) methodologies lack sufficient explainability for valuation practice 

(McCluskey et al., 2013). 

More recently, several authors investigate combining econometric and ML methodologies in a 

hybrid methodology (see, e.g., Ceyhan (2017), and Kroon & Francke (2017)). By replacing the rigid a 

priori specified function of an econometric model with ML methodologies, they argue that prediction 

accuracy can increase through higher flexibility while maintaining the structure of an econometric 

model. In line with these authors, Schimert & Wineland (2010) argue that determining the influence of 

input features on the predicted output through ML estimation while maintaining the econometric 
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structure able to capture temporal effects performs best in terms of accuracy and reliability compared to 

stand-alone econometric and ML models. Although these studies show hybrid methodologies 

outperform stand-alone models in terms of prediction accuracy, however, Ceyhan (2017) does argue 

that explainability declines compared to stand-alone econometric methodologies.  

Explainability is a contemporary topic in the practical applicability of AVMs. Schulz & Wersing 

(2021), in their discussion on the applicability of AVMs as automated valuation services (AVS), argue 

that users of these methodologies require an understanding of the results. The uncertainty in reported 

information based on AVMs, they argue, should be reported in a manner that’s comprehensible to its 

users. Similarly, in the context of valuation practice, AVMs require capabilities to communicate the 

origination of calculated MV constituents. As dictated in current Dutch regulatory practice, transparency 

of valuation methodologies to clients is essential (Fakton, 2021). To comply with current valuation 

standards (IVSC, 2019), therefore, AVMS require explainability (RICS, 2021). Complementing this 

literature, we will investigate the overall accuracy, explainability, and reliability of a methodology that 

permits the influence of appraiser expertise and can therefore be applicable to valuation practice. 

Specifically, we will explore the extreme gradient boosting with monotonic constraints (XGBMC) 

methodology by predicting the MV constituents of buy-to-let properties in the Netherlands. For real 

estate valuation, predicting the MV constituents entails the automation of the single period 

capitalization method (SPCM; RICS, 2020a), the most common method in valuing buy-to-let properties 

(Fakton, 2021)1. 

Extreme gradient boosting (XGB) is a scalable tree-boosting system that controls for overfitting, 

thus providing better out-of-sample performance compared to traditional tree-based methodologies 

(Chen & Guestrin, 2016). Monotonicity, in addition, refers to shape constraints that limit the influence 

of input features on the predicted output, therefore acting as regularization (You et al., 2017). Stated 

differently, a positive monotonic relationship between X and Y implies that for an increase in X, the 

predicted variable Y cannot decrease (Bartley et al., 2019). Developing monotonic constraints (MCs) 

through appraiser expertise improves the explainability of an AVM while maintaining flexible ML 

properties that make these methodologies attractive (Gupta et al., 2018). Additionally, MCs are argued 

to improve the generalization of an AVM to unseen valuation ‘cases’, which is more pronounced when 

dealing with thin market data (You et al., 2017).  

 The current study develops an appraiser-based XGB methodology, incorporating appraiser 

expertise to develop MCs and comparing it to several econometric and ML methodologies. We compare 

these methodologies on their accuracy, explainability, and reliability by forecasting the three 

constituents of MV: vacant possession value (VPV), market rent (MR), and gross income multiplier 

 
1 The single period capitalization method is part of the income approach to valuation. Appraisers calculate 

market value using the single period capitalization method by capitalizing market rent for a representative single 

period. Other approaches to market value estimation are divided into the four categories asset-based approach, 

cost approach, income approach, and market approach (RICS, 2020a). 
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(GIM). Specifically, based on buy-to-let transaction data from the Netherlands, we compare XGBMC 

to a parametric HPM, non-parametric random forest (RF), gradient boosting (GB), and XGB, and a 

hybrid methodology comprising HPM with an XGB estimation procedure. The primary research 

question of this paper is as follows. 

 

How do appraiser-based automated valuation methodologies compare to traditional 

econometric and machine learning methodologies? 

 

We answer this research question through several steps. First, comparing AVMs for automation of the 

SPCM requires a definition of current valuation practice in the Netherlands and how AVMs fit into that 

context. We therefore adopt the structure of Hilgers et al. (2021) with insights from Dutch (NRVT, 

2021) and international (RICS, 2020a) regulatory practice for this purpose, providing an overview of 

current valuation practice and how AVMs can complement real estate appraisers. Then, we will proceed 

by providing an elaboration on the derived dependent variable to be estimated by AVMs, MV, and a 

review of its constituents. Second, a chapter will be devoted to explain the functioning of the proposed 

AVM methodologies. Specifically, we follow the combined structure of Hinrichs et al. (2021) and 

Schulz & Wersing (2021), with insights from other authors (e.g., Beimer & Francke (2019); Kroon & 

Francke (2021); Mullainaithan & Spiess, (2017)). Finally, to provide a valid comparison of the proposed 

methodologies, we measure accuracy, explainability, and reliability. We follow the structure of Steurer 

et al. (2021) to empirically measure accuracy and reliability, providing a comprehensive overview of 

model performance. To measure explainability we adopt conceptual arguments from an appraiser’s 

perspective using insights from Arrieta et al. (2020). 

The paper is further structured as follows. Section 2 discusses current valuation practice, how 

AVMs fit into that context, and defines the three constituents of MV as outlined above. Section 3 

contains a theoretical background to each proposed methodology. Section 4 describes the Dutch housing 

market, data sources, and the steps taken to process the transaction data that are used in this study. 

Section 5 provides the modeling strategy, an overview of methodological designs, and performance 

measures. Finally, Section 6 describes the results, after which conclusions and a discussion are provided 

in Section 7. 

2. Valuation framework 

Adopting AVMs for real estate valuation can aid professional appraisers in their daily conduct. For an 

AVM to be worth considering, however, it must fit into current valuation practice. This section will, 

therefore, discuss valuation practice and how AVMs can fit into that context. First, we will discuss 

current international standards dictating requirements on professional valuations. Based on these 

requirements, we will then discuss how AVMs can complement professional appraisers. Finally, 

definitions will be given to the constituents of MV to be estimated by the AVMs. The topics discussed 
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in this section serve as a relevant framework for the methodological comparison in the following 

sections. 

2.1 Valuation practice 

Professional appraisals are important to various interrelated processes in the property market, including 

performance measurement, acquisition, and disposal, by acting as a surrogate for transaction prices 

(McAllister et al., 2003). In the Netherlands, professional valuations are bound to regulations in line 

with the European (EVS; TEGOVA, 2020) and International Valuation Standards (IVS; IVSC, 2019)2. 

Central to these standards are the risk and liability associated with valuations, and the responsibility 

appraisers have in conducting these valuations (RICS, 2018). Valuations are to be conducted, for 

instance, by qualified professionals who must be able to show skill, knowledge, diligence, and ethical 

behavior. Appraisers have a responsibility to conduct thorough research on the valued property, 

including internal (e.g., site visitation, structural integrity review, etc.) and external (e.g., land use 

review, ownership rights, etc.) audits3. In doing so, appraisers have a responsibility to communicate all 

findings of their audits, as these serve as the basis for the final value estimate. The Royal Institution of 

Chartered Surveyors (RICS; 2020a: 106) describe the importance of due diligence in conducting 

valuations as the following: “it is the responsibility of the valuer to ensure that they have undertaken an 

appropriate level of due diligence… as this may have a very significant impact on value.” Valuations 

are inherently uncertain (French & Gabrielli, 2004), and, in addition, clients incur financial risk based 

on the value estimates from these professionals (Krause et al., 2020). In case of negligence, the liability 

of negative effects based on the estimates of value resides with these professionals (RICS, 2018; 

TEGOVA, 2020).  

Given the scrutiny in conducting professional appraisals, it is surprising to see systematic 

differences between appraised and transacted values. MSCI (Walvekar & Kakka, 2019), for instance, 

report that appraisal and transaction values in the Netherlands have a weighted average absolute 

difference of 10% in 2019. Historically, differences between these values arise from various sources. 

McAllister et al. (2003) discuss that appraiser behavior strongly influences appraisal value, which can 

cause differences with transaction values. For example, historic appraisals influence current appraisals 

through an ‘anchoring bias’. Specifically, appraisal smoothing occurs as appraisers anchor onto the 

previously appraised value, even though previous appraisal values does not necessarily reflect current 

value (Clayton et al., 2001). Additionally, professional appraisers employ methodologies requiring 

historic transaction data and are hence lagging. Appraisers are therefore slow in adopting non-

transaction-based information (e.g., market changes) into appraisals (McAllister, 2003). Apart from 

appraiser behavior, client influence on independent appraisals is another potential issue associated with 

 
2 The main regulator of the European and International Valuation Standards in the Netherlands is the Register of 

Real Estate Appraisers Netherlands (NRVT, 2021). 
3 The Royal Institution of Chartered Surveyors (RICS, 2019) describes the due diligence process for the UK and 

the Register of Real Estate Appraisers Netherlands (NRVT, 2017) for the Netherlands. 
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manual valuations. Crosby et al. (2018) compare differing client needs and conclude on the existence of 

significant differences in appraisal outcomes. Although this result is contingent on circumstances (e.g., 

appraisal salience, market context), it raises a potential issue with manual valuations.  

In this context, AVMs are mentioned as valuable tools in conducting valuations. Mooya (2011) 

argues for instance that the ability of AVMs to provide standardized valuations cause them to be more 

sophisticated and accurate than manual valuations. The author further states there to be no reason for 

AVMs not to completely replace appraisers. More recently, a report by the RICS (Scheurwater, 2017) 

describes two sides to the debate on the role of AVMs in valuation practice. On the one hand, and in 

line with Mooya (2011), reasons are mentioned like those described above to argue AVMs to be feasible 

in replacing manual valuations. On the other hand, valuations are argued to be “part art, part science” 

(Scheurwater, 2017: 25). Although AVMs can replace the “science” part of valuation, streamlining the 

routine aspects of the profession, AVMs will not be able to replace the “art” of valuing, others argue. 

AVMs affect the valuation industry. There is still, however, an ongoing debate on the liability 

of valuations. It is unclear, for example, who assures the value estimates by AVMs and, if AVMs cause 

significant loss to clients acting on AVM estimates, who is held accountable (RICS, 2021). For now, at 

least, Scheurwater (2018) argues AVMs to be tools for most valuations, complementing the appraiser. 

Improving transparency and setting standards for assessing the quality of AVMs, such as those proposed 

by the IAAO (2018), can expand the usefulness of AVMs in the valuation process. 

2.2 Market value 

The estimation of MV is the primary objective of commercial valuations. MV is defined as (IVSC, 2019: 

18; TEGOVA, 2020: 27): 

 

“The estimated amount for which an asset or liability should exchange on the valuation date between a 

willing buyer and a willing seller in an arm’s length transaction, after proper marketing and where the 

parties had each acted knowledgeably, prudently, and without compulsion.” 

 

The “estimated amount” excludes any special terms, considerations, and concessions and “an arm’s 

length transaction” presumes the transaction to be between unrelated parties, each acting independently 

(IVSC, 2019: 19). Aligning with current valuation practice and associated regulations as outlined above 

requires an AVM that automates a methodology currently applied by professional appraisers. To 

estimate MV, appraisers use three methods: the market approach, income approach, and cost approach. 

Although all methods are feasible in calculating MV, we will investigate the automation of the income 

approach, more specifically the SPCM (RICS, 2020a), as it is most commonly applied in valuing buy-

to-let properties (Fakton, 2021). Applying an AVM to the constituents of the SPCM to MV estimation 

has the additional benefit of allowing appraiser adjustments when model results become unreliable (e.g., 
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in case of nonstandard properties; Hilgers et al., 2021). The parameters used in the SPCM are threefold. 

First, VPV is defined as (Fakton, 2021: 36): 

 

“The estimated selling price based on buyer’s costs, free of rent and other expenditures… is synonymous 

with the term ‘market value freehold with vacant possession’”4 

  

Meaning VPV is similar in concept to MV, but is calculated using the special assumption that the 

property is vacant. Special assumptions are assumptions that either (1) assume facts that differ from the 

actual facts existing at the date of valuation, or (2) that would not be made by a typical market participant 

in a transaction on the date of valuation (RICS, 2020a: 36). The special assumption of vacant possession 

is used in the valuation of buy-to-let properties as a benchmark measure and is typically higher than 

MV. Second, MR is defined as (IVSC, 2019: 21): 

 

“The estimated amount for which an interest in real property should be leased on the valuation date 

between a willing lessor and a willing lessee on appropriate lease terms in an arm’s length transaction, 

after proper marketing and where the parties had each acted knowledgeably, prudently and without 

compulsion.” 

 

Or in other words, MR is the value expected to be paid as rent for a property (TEGOVA, 2020: 30). The 

conceptual framework in support of the definition of MR is similar to that of MV described above. 

Specifically, in the definition, “estimated amount” excludes any special terms, considerations, and 

concessions, while market participants typically agree on “the appropriate lease terms” for the type of 

property on the date of valuation (IVSC, 2019: 21). Finally, the GIM is defined as (IVSC, 2003: 406): 

 

“The ratio between the sale price or value of a property and the average [gross] annual income or 

income expectancy. It is applied to income to arrive at capital [market] value.” 

 

Also described as years’ purchase in the Commonwealth, appraisers determine appropriate levels of 

GIM through comparable transactions using factors reflecting risk levels (RICS. 2020b).  

To accurately estimate these parameters, appraisers require three types of attributes associated 

with buy-to-let properties. First, market attributes are all conditions associated with the market during 

which the property is valued. Second, spatial attributes are the locational characteristics. Finally, 

structural attributes entail all physical characteristics of the property. Based on relationships between 

the property’s attributes, input variables, and MV, we construct Figure 1 (Fakton, 2021). Specifically, 

in valuing buy-to-let properties, the input parameters VPV, MR, and GIM are estimated based on the 

 
4 Translated from the Dutch definition: “De geschatte verkoopprijs op basis van de kosten koper, vrij van huur en 

overige lasten… is synoniem voor de term ‘marktwaarde vrij van huur en gebruik’” (Fakton, 2021: 36). 
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market, spatial, and structural attributes of the property. By selecting reference properties possessing 

similar attributes, appraisers compare and adjust these input parameters. Determining MV using the 

input parameters, in turn, requires consideration of various ratios, potentially further adjusting the input 

parameters (Fakton, 2021). VPV, for instance, influences MV in two ways (for background on how 

VPV and MV differ, see Conijn & Schilder (2011)). First, appraisers compare the MR-to-VPV ratio to 

the GIM. Specifically, appraisers use the MR-to-VPV ratio to determine an appropriate level of the GIM 

based on comparable properties. Due to higher probabilities of vacancies, properties yielding higher 

MR-to-VPV ratios carry higher risk. As demonstrated by the risk-return tradeoff (Markowitz & Blay, 

2014), higher risks must be compensated with a higher GIM. The MV-VPV ratio, finally, serves as a 

reference in determining accurate levels of MV5. Based on these ratios, appraisers calculate the MV of 

buy-to-let properties using MR-to-GIM in the SPCM. 

 

 

Figure 1. Relationships between transaction attributes (market, spatial, and structural), input parameters (vacant 

possession value, market rent, and gross initial yield) and market value. 

3. Automated valuation methodologies 

This section reviews the proposed AVMs we use to predict the MV constituents as outlined above6. 

Specifically, we discuss the more traditional HPM and newer ML methodologies in this section. Within 

ML methodologies, we discuss the tree-based methodologies RF, GB, and XGB. Additionally, we 

provide background to the hybrid methodology comprising HPM with an XGB estimation procedure 

 
5 Based on a property’s attributes, appraisers determine appropriate market value-vacant possession value ratios. 

The Register of Real Estate Appraisers Netherlands (NRVT, 2021) provides extensive discussion on the vacant 

possession parameter in valuing Dutch buy-to-let properties. 
6 Various methodologies suitable as an automated valuation methodology exist. For the purposes of comparing 

our proposed methodology, however, these are out of the scope of this paper. Interested readers are referred to 

other authors, including Malpezzi (2002; hedonic pricing models), and Shalev-Shwartz & Ben-David (2014; 

machine learning methodologies). 
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and the newly proposed development of an XGB methodology with MCs (XGBMC). The proposed 

methodologies are shown in Figure 2. First, however, we discuss the method used in comparing the 

proposed methodologies: cross-validation (CV). 

 

Figure 2. Automated valuation methodologies, divided into machine learning methodologies (random forest, 

gradient boosting, extreme gradient boosting, and extreme gradient boosting with monotonic constraints), an 

econometric methodology (hedonic pricing model), and a hybrid methodology comprising the hedonic pricing 

model with an extreme gradient boosting estimation procedure. 

3.1 Comparing methodologies 

Predictions made by AVMs contain inherent uncertainty; reporting a single prediction value does not 

provide sufficient information regarding an AVMs performance. Linear-based methodologies, like the 

HPM, can calculate standard error outputs due to parametric model assumptions. Confidence intervals 

can therefore be calculated within these methodologies, enabling an interpretation of model accuracy 

and reliability (Krause et al., 2020). Non-linear methodologies, like the other methodologies proposed 

in this paper, however, do not share the same properties as methodologies from the former type and are 

hence unable to calculate uncertainty measures directly. To compare both types of methodologies, 

therefore, we adopt a resampling procedure. In contrast to other, error-based procedures, resampling 

procedures do not require assumptions on symmetry and normality of the error distribution (Krause et 

al., 2020). One such procedure is bootstrap resampling. Bootstrap resampling refers to the statistical 

technique of drawing sample observations from the original data, returning drawn samples to the original 

data (i.e. replacement), until reaching the sample size (Davison & Hinkley, 1997). In the context of 

AVMs, methodologies are fit on this bootstrap sample and tested on the remaining data (i.e. out-of-bag 

sample). This procedure is repeated various times, allowing the computation of accuracy and reliability 

metrics. 

 Although resulting in good estimates of model accuracy and reliability, bootstrap resampling is 

computationally expensive. We therefore choose to adopt another resampling procedure: CV, an 

umbrella term for various out-of-sample testing techniques (Steurer et al., 2021). CV techniques prevent 

overfitting by splitting the data into training and testing parts, using the training data to fit a particular 

model, while the model accuracy and reliability are obtained from the testing, or hold-out data 
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(Goodfellow et al., 2015). The overall performance in k-fold CV (a CV technique) using k data splits, 

or folds, is calculated by taking the average performance across k trials (Steurer et al., 2021). CV 

techniques are generally more efficient than other resampling techniques (see, e.g., Nakatsu, 2021) 7. 

Additionally, Yang (2007) argues that CV techniques allow comparison of methodologies that differ in 

their specification procedures, such as parametric and non-parametric methods. Specifically, Yang 

(2007) argues that using CV, under several conditions (e.g., appropriate splitting ratio), selects the best 

model with probability converging to 1. 

 Within this paper, we apply a nested repeated k-fold CV strategy to measure the accuracy and 

reliability of the proposed methodologies. Repeating CV ensures that the results obtained are not 

arbitrarily based on the specific splits. We further choose a nested CV strategy as most ML 

methodologies require tuning of hyperparameters. Hyperparameters, in contrast to parameters, are 

manual settings of methodologies commonly used in ML. Because of the manual nature of 

hyperparameters, we therefore require a similar CV technique in the training data to optimize the 

hyperparameters of each ML methodology8. Figure 3 displays our repeated k-fold CV strategy for the 

performance measurement in terms of accuracy and reliability. Specifically, we choose to repeat ten-

fold CV three times. We optimize hyperparameters by repeating five-fold CV three times during each 

aforementioned fold and repeat in the training data (hence, nested CV). In line with Steurer et al. (2021), 

we obtain in-sample hyperparameter set performance using the root mean squared error (RMSE). Using 

the metrics described in Section 5.3, we calculate model accuracy and reliability on the hold-out sample 

for each fold and repeat. We determine aggregate accuracy performance for each methodology and 

performance measurement based on the average across folds and repeats. By calculating error statistics 

across folds and repeats, we determine model reliability (further described in Section 5.3). 

 

Figure 3. Repeated k-fold cross-validation strategy for the performance measurement in terms of accuracy and 

reliability using ten folds and three repeats. 

 
7 Although cross-validation is more computationally efficient than bootstrap resampling, we found an average 

throughput time of model training and evaluation of three days per methodology and market value constituent. 
8 Setting hyperparameters is standard in machine learning methodologies as these determine the accuracy and 

reliability of outcomes. See Probst et al. (2019) for an overview of hyperparameter settings in machine learning 

methodologies. 
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3.2 Hedonic pricing model 

Formalized by Rosen (1974), HPMs relate observed outcomes to implicit or hedonic prices. Sheppard 

(1999) discusses that the value of heterogeneous products, such as properties, can be disentangled into 

an underlying vector of attributes. MV constituents, in our example, can therefore be regressed on 

property attributes (Malpezzi, 2002). The implicit pricing of these attributes is what constitutes an HPM. 

Apart from standard econometric issues associated with the HPM (see, e.g., Sheppard, 1999), however, 

constrains exist when predicting MV constituents using HPMs due to several issues. First, the HPM 

requires ex-ante decisions on relevant variables and functional form, making it less flexible compared 

to other methodologies (Robinson & Sanderford, 2017)9. Additionally, specification errors are probable 

as it is inconceivable to construct an exhaustive HPM including all relevant relationships between 

variables (Peterson & Flanagan, 2009). In this study, we denote the prediction of the constituents of MV 

using the HPM methodology as: 

 

𝑀𝑉𝑉𝑃𝑉,𝑀𝑅,𝐺𝐼𝑀 = 𝑋𝛽 + 𝛿   (𝟏) 

 

In Equation (1), 𝑀𝑉𝑉𝑃𝑉,𝑀𝑅,𝐺𝐼𝑀 represent MV constituents, 𝑋 a vector of market, spatial, and structural 

attributes, 𝛽 a vector of associated coefficients to be estimated, and 𝛿 time-fixed effects. Although 

standard for the HPM, the error-term, or noise, is not displayed as the error-term is estimated using the 

procedure described in Section 3.1 and further elaborated in Section 5.3. 

3.3 Random forest 

RF is a tree-based methodology introduced by Breiman (2001a). In the context of house price prediction, 

RFs are made up of many decision trees (DT), also called classification and regression trees (CART). A 

simple decision tree is shown in Figure 4. The figure shows a regression tree consisting of both nodes 

and branches. Nodes make up the feature selection mechanisms that best split the data into non-

overlapping regions (Schulz & Wersing, 2021). Branches represent outcomes, connecting nodes based 

on this feature selection. Starting at the top, the root node is the first node of the tree and involves the 

initial feature selection criterium. These splits continue in other nodes, called child nodes, until a 

terminal node containing the value estimate, called a leaf, is reached (Mullainathan & Spiess, 2017). 

The value estimate is the mean value of all training data instances that meet the categorical requirements 

of feature selections in the respective leaves. We can describe this process, similar to the HPM, as 

products of dummy variables (e.g., X1 = 1Bedrooms>2 * 1property size>100), with corresponding coefficients (e.g., 

€ 300.000). Recursively evaluating features in nodes to best split the data is called the training process 

 
9 To compare our appraiser-based methodology, we adopt a standard linear hedonic pricing model. More flexible 

econometric specifications are, however, capable of modeling complex non-linear relationships. For derivations 

of these econometric methodologies see, for example, Gao & Li (2013), Malikov & Sun (2017), and Debarsy & 

Lesage (2021). 
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and is conducted by measuring performance in terms of information gain (e.g., mean squared error; 

Breiman, 2001a). Narrowing down feature selection to be more specific, thereby increasing tree depth, 

will cause training samples to be predicted more accurately. Although more tree depth will lead to 

accurate results in-sample, it comes at the cost of lower out-of-sample prediction accuracy; a 

phenomenon known as overfitting (Mullainathan & Spiess, 2017). Optimizing out-of-sample prediction 

accuracy involves limiting the size of the tree through regularization (see, e.g., Varian (2014)), and by 

aggregating trees. 

 

Figure 4. Simple regression tree consisting of a root node, two child nodes, and four terminal nodes, or leaves. 

 

RF improves individual DT accuracy by growing an ensemble of regression trees in a forest (Breiman, 

2001a). If individual trees are uncorrelated, RFs can cancel out the influence of noisy data during 

training through a bagging approach. In the context of RF development, bagging, or bootstrap 

aggregating, refers to the random selection of training data for each tree with replacement and 

combining individual results through aggregation (Breiman, 1996). This process makes RFs achieve 

higher accuracy than any individual tree. In this study, we denote the prediction of the three constituents 

of MV using the RF methodology as (Schulz & Wersing, 2021):  

 

𝑀𝑉𝑉𝑃𝑉,𝑀𝑅,𝐺𝐼𝑀 =
1

𝑇
∑ ∑ 𝟙(𝑥 ∈ 𝑆𝑠,𝑡)

𝑇

𝑡=1

𝑆

𝑠=1

θ𝑠,𝑡
𝑉𝑃𝑉,𝑀𝑅,𝐺𝐼𝑀   (𝟐) 
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In Equation (2), 𝑀𝑉𝑉𝑃𝑉,𝑀𝑅,𝐺𝐼𝑀 represent MV constituents and 𝟙(𝑥 ∈ 𝑆𝑠,𝑡) dictates an indicator function 

that equals one if the property’s characteristics, denoted as 𝑥, fall into the set 𝑆𝑠 of tree 𝑡. The mean 

values of the MV constituents associated with the set 𝑆𝑠 of tree 𝑡 are then denoted as θ𝑠,𝑡
𝑉𝑃𝑉,𝑀𝑅,𝐺𝐼𝑀

. 

Aggregating the estimates of trees is performed by taking the average values generated by all trees, 

denoted as T (Breiman, 1996). 

3.4 Gradient boosting 

GB functions similar to RF, relying on the premise of aggregating individual predictors (Friedman, 

2001). In contrast to RF, however, GB differs on several elements that make it more accurate in 

regression-type problems, such as valuing real estate (Graczyk et al., 2010). First, contrary to a bagging 

approach in RF, GB adopts a boosting approach involving the aggregation of weak learners (Hastie et 

al., 2017: 337–384). These weak learners involve shallow trees, called stumps, where the first tree is 

fitted as standard. All additional trees are then fitted to the residuals of predecessor trees in a sequential 

learning process, minimizing the loss function using a gradient descent algorithm. Graphically, this 

sequential process can be represented using Figure 5. 

 

 

Figure 5. Gradient boosting learning process. The upper figure shows the true function the gradient boosting 

learning process tries to approximate. The lower figures display the boosted function after each iteration. 

Specifically, the first lower figure shows the boosted function after the approximation of 𝑦𝑖 and the additional 

lower figures display the boosted functions after fitting the residuals of predecessor trees in a sequential learning 

process. 

 

As shown in the figure, the gradient boosted function approximates the true function through each 

sequential iteration. To prevent overfitting, individual trees are only partially considered in the 

aggregated model through a learning rate (Schulz & Wersing, 2021), leaving space for additional trees 

to improve the aggregate model (Chen & Guestrin, 2016). In this study, we denote the prediction of the 

three constituents of MV using the GB methodology as: 
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𝑀𝑉𝑉𝑃𝑉,𝑀𝑅,𝐺𝐼𝑀 = 𝑦1
𝑉𝑃𝑉,𝑀𝑅,𝐺𝐼𝑀 + ƞ ∑ 𝑟𝑗

𝑛

𝑗=1

   (𝟑) 

 

In Equation (3), 𝑀𝑉𝑉𝑃𝑉,𝑀𝑅,𝐺𝐼𝑀 represent MV constituents. 𝑦1
𝑉𝑃𝑉,𝑀𝑅,𝐺𝐼𝑀

 denotes MV constituent 

predictions made by the first regressor, 𝑟 the residuals of regressor 𝑗, and ƞ the learning rate10. 

3.5 Extreme gradient boosting 

Introduced by Chen & Guestrin (2016), XGB is an extension of the GB methodology. XGB, however, 

adopts several contrasting properties. First, XGB does not require the sequential model fitting of 

individual trees. Instead, it adopts a parallel algorithm for optimal split finding. In contrast to RF and 

GB, XGB adds a regularization term to the standard loss function used for split optimization in decision-

tree-based methodologies (Chen & Guestrin, 2016: 2):  

 

Ω = γ𝐿 +
1

2
λ‖𝑤‖2   (𝟒) 

 

In Equation (4), γ and λ are user-specified regularization terms11, 𝐿 denotes the number of leaves (i.e. 

terminal nodes), and ‖𝑤‖ represents the vector norm of leaf weights, or predicted values. γ is meant to 

encourage tree pruning (i.e. decrease tree complexity), while larger values of λ are meant to decrease 

the sensitivity to individual weight observations 𝑤. Higher values of Ω, therefore, decrease the 

likelihood a tree specification ends up in the aggregated model. When the regularization parameter Ω is 

set to 0, predicting the MV constituents 𝑀𝑉𝑉𝑃𝑉,𝑀𝑅,𝐺𝐼𝑀 using the XGB methodology falls back to the 

GB methodology. In addition to this regularization term, XGB incorporates a sparsity-aware algorithmic 

measure to deal with sparse (e.g., missing) input data. Specifically, XGB uses non-missing values to 

learn the best direction to handle sparse values. These unique features of XGB improve out-of-sample 

performance compared to GB, while also enhancing training speed (Chen & Guestrin, 2016)12. 

3.6 Hybrid methodology 

To combine the benefits of stand-alone econometric and ML methodologies, Ceyhan (2017) developed 

two hybrid methodologies consisting of a hierarchical trend model (HTM) with an iterative estimation 

procedure using ANNs and RFs. As described by Kroon & Francke (2021), adopting the methodology 

in a later study, the hybrid model combines the structure of econometric methodologies with the 

 
10 For a more detailed derivation of the gradient boosting methodology, see Friedman (2001). 
11 α is a median-based third regularization parameter and functions similar to the mean-based λ as both decrease 

sensitivity to individual weight observations. Although not explicitly described in Chen & Guestrin (2016), 

implementations of the extreme gradient boosting methodology include all three regularization parameters. 
12 In this study, we focus on the most important differences between the extreme gradient boosting methodology 

and other methodologies. The exact derivation of extreme gradient boosting and its differences with GB are 

outside the scope of this paper. Interested readers are referred to Chen & Guestrin (2016). 
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flexibility of ML methodologies. The hybrid methodologies proposed by these authors are based on a 

methodology adopted in Schimert & Wineland (2010) to predict engine wear. Specifically, the authors 

estimate the residuals of a RF methodology with a dynamic linear model (DLM) using a Kalman filter. 

The combined methodology outperformed the stand-alone models in terms of prediction accuracy.  

Similarly, other authors combine the linear capabilities of econometric methodologies with 

nonlinear capabilities of ML. Zhang (2003), for example, combines an autoregressive integrated moving 

average (ARIMA) time series model with ANNs and argues combining both yielding better results. In 

a later study, Smyl (2020) argues econometric methodologies to be able to measure the main level and 

seasonality, while ML methodologies are capable of capturing non-linear trends. In line with these 

authors, we will investigate the merit of combining both types of methodologies in a hybrid 

methodology. Specifically, we develop a methodology combining the structure of an HPM with the 

flexibility of an XGB estimation procedure. We estimate the constituents of MV using the hybrid 

methodology as follows: 

 

𝑀𝑉𝑉𝑃𝑉,𝑀𝑅,𝐺𝐼𝑀 = 𝑋𝛽 + 𝛿 + 휀   (𝟓) 

 

𝑤ℎ𝑒𝑟𝑒: 휀 = 𝑓(𝑋)  

 

In Equation (5), 𝑀𝑉𝑉𝑃𝑉,𝑀𝑅,𝐺𝐼𝑀 represent MV constituents, 𝑋 a vector of market, spatial, and structural 

attributes, 𝛽 a vector of associated coefficients to be estimated, 𝛿 time-fixed effects, and 휀 the residuals, 

or noise. The residuals are then estimated by the XGB methodology using the function 𝑓(𝑋). 

Specifically, we first train an HPM without modification to capture the linear component. The resulting 

nonlinear residuals (휀) between the predicted MV constituents (𝑀�̂�𝑉𝑃𝑉,𝑀𝑅,𝐺𝐼𝑀) and the actual MV 

constituents (𝑀𝑉𝑉𝑃𝑉,𝑀𝑅,𝐺𝐼𝑀) in the training data are then estimated using the XGB methodology. 

3.7 Monotonic constraints 

MCs provide guarantees on how the output should depend on input (Canini et al., 2016). For example, 

when appraising a property, all else being equal, appraisers may want to constrain the MV of a property 

to be monotonically increasing or decreasing with certain attributes. MCs can be formally denoted as 

the following: 

 

𝐏𝐨𝐬𝐢𝐭𝐢𝐯𝐞 𝐦𝐨𝐧𝐨𝐭𝐨𝐧𝐢𝐜𝐢𝐭𝐲 −  For all 𝑥2 ≥ 𝑥1, 𝑀𝑉(𝑥2) ≥ 𝑀𝑉(𝑥1)  (𝟔) 

 

𝐍𝐞𝐠𝐚𝐭𝐢𝐯𝐞 𝐦𝐨𝐧𝐨𝐭𝐨𝐧𝐢𝐜𝐢𝐭𝐲 −  For all 𝑥2 ≥ 𝑥1, 𝑀𝑉(𝑥2) ≤ 𝑀𝑉(𝑥1)  (𝟕) 

 

Meaning MV constituents are non-decreasing (non-increasing) with increasing values of monotonically 

constraint input attributes 𝑥. Graphically, monotonicity can be represented using Figure 6. As shown in 
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the figure, in the example of positive monotonicity, output values do not have to exclusively increase 

with higher values of monotonically constraint input attributes, but cannot decrease. 

 

Figure 6. Monotonicity. Imposing positive (negative) monotonicity implies that for an increase in a positively 

(negatively) monotonically constraint attribute 𝑥, market value constituents MV(x) cannot decrease (increase). 

 

Imposing monotonicity on input acts as regularization, producing more stable model results, improving 

generalizability (You et al., 2017), and increasing explainability (Gupta et al., 2018). Unlike other 

regularization measures, MCs do not require tuning other than the binary decision of whether and in 

what direction to apply shape constraints. Additionally, constraining the model specification by using 

MCs provides a clear semantic meaning to users (e.g., appraisers) and clients on how each shape-

constrained attribute affects MV constituents. Restricting models a priori by imposing monotonicity, 

however, raises a potential issue. Specifically, the selection of features to monotonically constrain 

requires strong prior belief and expertise of the regression problem. Enforcing monotonicity on features 

that are not purely monotonically related to output variables will unnecessarily hamper flexibility 

compared to similar, non-monotonically constraint methodologies. 

In deciding what features to monotonically constrain in the XGB methodology, we use the 

expertise of appraisers at a valuation firm (see Appendix 1: Envalue valuation firm), for which 

arguments are provided in Section 5.2. When carefully developed, the proposed XGBMC methodology 

can improve generalizability while also increasing explainability compared to existing methodologies. 

4. Data 

4.1 Market and data sources 

Our case study is situated in the Netherlands, comprising buy-to-let property transactions. The housing 

market of the Netherlands has experienced large price developments over the last few years. For 

instance, transaction prices, in general, have risen by more than 5% per annum since 2016 (CBS, 2021a). 

Most recently, price developments were more pronounced with an average increase in transaction prices 

of 18%  in the third quarter of 2021 compared to the same quarter in 2020 (NVM, 2021). In total, an 

MV(x)

x

Positive monotonicity 

MV(x)

x

Negative monotonicity 
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average of approximately 227,000 residential property transactions occurred in the Netherlands per year 

in the period 2019–2020 (CBS, 2021b). For our case study, we obtain a sample of 31,888 vacant 

transactions and 7,595 rental transactions in 2021. Additionally, we obtain a sample of 1,275  investment 

transactions from the years 2019, 2020, and 2021. These transactions are retrieved from a valuation firm 

(see Appendix 1: Envalue valuation firm) and processed into separate datasets. The raw data received 

contains information on the VPV (in case of vacant transactions), MR (in case of rental transactions), 

and GIM (in case of investment transactions). We measure VPV and MR per square meter of usable 

floor area to investigate the effect of constraining certain attributes through MCs (elaborated further in 

Section 5.2).  

We also obtain property characteristics. In the case of investment transactions, these include 

construction year, the Leefbaarometer13, theoretical rental income, whether the property is single- or 

multifamily, transaction date, number of residential units, and usable floor area. In the case of rental 

transactions, these include construction year, days on the market, the Leefbaarometer, the number of 

rooms, object volume, whether the property is single- or multifamily, transaction date, type- and subtype 

of object, and usable floor area. We receive vacant transaction data with similar characteristics as the 

rental transaction data with the additional feature of whether a property was transacted with purchaser’s 

costs. Raw transaction data for each type are then enriched, cleaned, and transformed, elaborated below. 

4.2 Data enrichment 

The received data has 7 relevant features for the investment dataset, 10 relevant features for the rental 

dataset, and 11 relevant features for the vacant transaction dataset. Prediction accuracy, however, 

improves with additional input features (Steurer et al., 2021), such as locational attributes and 

environmental characteristics. To increase the number of features in the raw transaction data, we 

establish application programming interface (API) connections with real estate-related sources in the 

Netherlands14. All of the established connections and retrieved features are displayed in Table 1. 

Specifically, we expand our datasets by extracting the residence ID, address coordinates (EPSG:4289 

format), and usable floor area from Basisregistratie Adressen en Gebouwen (BAG; Kadaster, 2021). We 

adopt usable floor area estimates from BAG to enrich missing usable floor area information received in 

the original datasets. Based on the retrieved residence ID, we obtain the energy label from the EP-online 

database, maintained by the Netherlands Enterprise Agency (NEA, 2021). The coordinates of BAG are 

translated into geodetic latitude and longitude and used as input for the Walk Score API. Walk Score 

(2021) provides a walkability score from an address (in terms of coordinates) to nearby amenities by 

evaluating walking routes, which we adopt in each of our considered datasets. 

 
13 The Leefbaarometer measures the livability of a district based on five indicators: amenities, inhabitants, 

physical environment, properties, and safety. For background on the Leefbaarometer and its specific 

measurement, see Leidelmeijer et al. (2019). 
14 Python code used in developing application programming interface (API) connections are obtainable from the 

author. 
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Based on address information, we obtain the names and codes of the neighborhoods, districts, 

municipalities, and provinces from Public Services on the Map (PDOK, 2021). Using this information, 

we measure locational attributes through data available at Statistics Netherlands. Specifically, we obtain 

the average distance in a neighborhood to eleven amenities and populations of districts, municipalities, 

and neighborhoods based on district, municipality, and neighborhood codes from Statistics Netherlands 

(2021c). Additionally, we obtain average household size, housing stock, average property value as set 

by municipalities, percentage of single- and multi-family homes, and the percentage of owner-occupied 

and private/socially rented properties on the neighborhood level.  
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Table 1. Features retrieved from public real estate sources using application programming interface (API) 

connections. 

Source Source description Extracted features 

Basisregistratie 

Adressen en 

Gebouwen 

Basisregistratie Adressen en Gebouwen is a Dutch 

registry of all addresses and buildings in the 

Netherlands, maintained by the Netherlands’ Cadastre, 

Land Registry, and Mapping Agency (Kadaster, 

2021). 

 

Address coordinates – EPSG:4289 format 

Residence ID 

Usable floor area 

EP-online EP-online is the official Dutch database where energy 

advisors register energy labels and indicators related 

to energy performance. The Netherlands Enterprise 

Agency maintains the EP-online database. 

Energy label 

 

Public Services on 

the Map 

Public Services on the Map is a platform that makes 

geographically related data from Dutch governmental 

bodies publicly available (PDOK, 2021). 

District code 

District name 

Municipality code 

Municipality name 

Neighborhood code 

Neighborhood name 

Province code 

Province name 

Statistics 

Netherlands 

Statistics Netherlands is a national Dutch statistical 

office maintaining data on various topics, including 

real estate-related information (CBS, 2021c). 

Average household size 

Average property value 

Distance to eleven amenities15 

District population 

Housing stock 

Municipality population 

Neighborhood population 

Percentage owner-occupied and 

private/socially rented 

Percentage single-/multifamily homes 

Walk Score The Walk Score is a number measuring the walkability 

of an address to nearby amenities by evaluating 

walking routes. Scores are provided in a range from 0–

100, with higher scores indicating better walkability 

(Walk Score, 2021). 

Walk Score 

Note: Table 1 displays features extracted from application programming interface (API) sources to enrich raw 

transaction data. 

 
15 The specific amenities are not displayed for concision, but include daycare, fire brigade, general practitioner, 

highway, hospital, movie theater, out-of-school care, pharmacy, primary school, supermarket, and train station. 
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4.3 Data cleaning 

Data on all three types of transactions were received in a raw format. To investigate the additional 

explainability of adding MCs in the XGB methodology and how the accuracy and reliability of this 

proposed methodology compares to existing methodologies, we choose to balance the transaction data 

through several steps (see Gelman & Hill (2007: 199–231) for elaboration on data balance). Rental and 

vacant transaction data were received in a similar format, therefore being processed simultaneously. 

Investment transaction data were received with differing features; we, therefore, describe the cleaning 

procedure of investment transactions separately. 

In the case of investment transactions, we take the following steps. First, we restrict investment 

cases based on usable floor area, residential units, and net purchase price. Specifically, we restrict 

investment transactions between 50 and 15,000 square meters of usable floor area, removing 49 

investment transactions. Additionally, we remove 100 investment transactions that consist of more than 

500 residential units. Third, we remove 239 transactions that have a net purchase price of lower than € 

80,000 or larger than € 5,000,000. Finally, we restrict transactions with a GIM between 10 and 100, 

removing one transaction. Predicting the GIM of these properties is inherently uncertain due to the small 

number of market participants and therefore transaction data. Finally, we remove 402 investment 

transactions with missing values on certain features. 

In case of rental and vacant transactions, we take the following steps. First, we remove 

uncommon properties in terms of usable floor area. Specifically, we remove all properties smaller than 

20 and larger than 250 square meters of usable floor area. Based on this requirement, we remove 70 

rental transactions and 787 vacant possession transactions. We further restrict rental prices between € 8 

and € 40 per square meter of usable floor area, per month, and transaction prices between € 1,400 and € 

10,000 per square meter of usable floor area. This restriction causes us to remove 233 rental transactions 

and 3,723 vacant transactions. Predicting the MR and VPV of these properties is inherently uncertain 

due to the small number of market participants and therefore transaction data. Finally, we remove 

transactions with missing values on certain features, resulting in the removal of 3,779 rental transactions 

and 9,344 vacant transactions.  
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Figure 7. Building age, total usable floor area, and gross income multiplier distributions in the investment 

transaction dataset before (left) and after (right) outlier detection using the isolation forest algorithm. Darker dots 

indicate higher anomaly scores. 

 

Figure 8. Building age, total usable floor area, and market rent distributions in the rental transaction dataset before 

(left) and after (right) outlier detection using the isolation forest algorithm. Darker dots indicate higher anomaly 

scores. 
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Figure 9. Building age, total usable floor area, and vacant possession value distributions in the vacant transaction 

dataset before (left) and after (right) outlier detection using the isolation forest algorithm. Darker dots indicate 

higher anomaly scores. 

 

Based on Liu et al. (2008) and in line with Steurer et al. (2021), we use an isolation forest (IF) to detect 

and remove outliers. An IF is an unsupervised anomaly detection algorithm that isolates cases that have 

different characteristics from normal instances (Liu et al., 2008). Using the IF algorithm, we calculate 

anomaly scores based on the average number of splits needed to isolate each observation, deleting the 

worst performers. We train the IF algorithm on each dataset and remove the approximately 5% worst 

performers of remaining transactions in each dataset, resulting in the removal of 25 investment 

transactions, 176 rental transactions, and 902 vacant transactions. Figures 7, 8, and 9 display usable floor 

area, building age, and MV constituents before and after outlier removal for each transaction type, where 

darker dots indicate higher anomaly scores. 
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Figure 10. The locational distribution of investment transactions (left), rental transactions (middle) and vacant 

transactions (right). 

 

After the cleaning procedure, 459 transactions remain in the investment transaction dataset, 3,337 

transactions in the rental transaction dataset, and 17,132 transactions in the vacant transaction dataset. 

The locational distribution of the transactions after the cleaning procedure is displayed in Figure 10. All 

features used in the prediction of each MV constituent are displayed in the tables below. Specifically, 

Table 2 presents the summary statistics for investment transactions, Table 3 for rental transactions, and 

Table 4 for vacant transactions. For the investment transactions, we have aggregated provinces into four 

regions (north, south, east, and west) due to limited data availability. For the rental transactions, the MR 

is measured per square meter of usable floor area, per month, and for the vacant transactions, the VPV 

is measured per square meter of usable floor area. In line with Schulz & Wersing (2021), rooms are 

measured as the sum of living and bedrooms, as the classification of rooms is arbitrary. Building age is 

the difference between the transaction date and construction year, measured in years. The negative 

minimum building age value in the vacant transaction summary statistics is therefore due to the property 

being transacted before delivery in the future. Energy labels and Leefbaarometer values are categorically 

encoded, where higher values indicate better energy performance and Leefbaarometer values, 

respectively.  

To capture locational attributes, we have included distance to eleven amenities and nine 

characteristics of the neighborhoods of transacted properties. Additionally, the population of the district, 

neighborhood, and municipality is included in the investment transaction dataset, and the population of 

the neighborhood and municipality is included in the rental and vacant transaction dataset. For 

investment transaction data, distance to amenities, transaction months, and regions are not reported for 

concision. Similarly, for rental and vacant transaction data, distance to amenities, the provincial code, 

type, sub type, and transaction months are not displayed for concision. 
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Table 2. Investment transactions descriptive statistics. 

Feature Mean Median Std. Dev. Min Max 

Gross income multiplier 21.04 18.58 9.83 10.93 93.79 

Average usable floor area per 

unit 82.85 79.60 24.67 19.75 189.00 

Building age 56.29 46.00 39.10 3.00 369.00 

Total residential units 10.49 7.00 9.24 1.00 45.00 

Total theoretical rental 

income 85,187.07 62568.00 71,596.96 3,813.48 336,212.90 

Total usable floor area 855.94 560.00 761.74 50 3650 

Walk Score 77.36 79.00 16.30 16.00 99.00 

Population      

District 15,797 11,485 15,225 465 109,805 

Municipality 234,508 103,581 278,370 10,477 873,338 

Neighborhood 3,989 2,845 3,973 175 28,870 

Neighborhood level      

Average household size 1.95 1.90 0.35 1.30 3.30 

Average property value 247,205 210,000 133,165 82,000 1,262,000 

Housing stock 1,982 1,484 1,905 69 14,222 

Percentage multifamily homes 0.55 0.59 0.32 0.00 1.00 

Percentage owner occupied 0.50 0.51 0.20 0.05 0.98 

Percentage ownership 

unknown 0.00 0.00 0.01 0.00 0.15 

Percentage private rent 0.20 0.17 0.14 0.00 0.62 

Percentage single family 

homes 0.45 0.41 0.32 0.00 1.00 

Percentage social rent 0.30 0.28 0.18 0.00 0.92 

Energy label  3.00  0.00 6.00 

Leefbaarometer  5.00  1.00 8.00 

Type single-family 0.27     

Type multifamily 0.73     

Transaction year 2019 0.87     

Transaction year 2020 0.11     

Transaction year 2021 0.02     

Note: Table 2 displays the descriptive statistics of the investment transaction data after cleaning and enriching, 

described above. Usable floor area is measured in square meters. Building age is measured as of the transaction 

date. Energy label and Leefbaarometer are ordinally encoded. Theoretical rental income and average property 

value are measured in euros. An object is either single-family, multifamily, or single/multifamily. Distance to 

amenities, transaction months, and regions are not reported for concision. The number of transactions is 459.  
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Table 3. Rental transactions descriptive statistics. 

Feature Mean Median Std. Dev. Min Max 

Market rent 16.96 16.25 5.47 8.00 40.00 

Building age 40.92 28.00 41.05 0.00 286.00 

Days on the market 38.40 24.00 45.33 1.00 533.00 

Number of rooms 3.15 3.00 1.04 1.00 10.00 

Object volume 243.98 230.00 86.20 60.00 723.00 

Total usable floor area 82.88 80.00 25.62 23.00 185.00 

Walk Score 80.06 84.00 16.86 0.00 100.00 

Population      

Neighborhood 3,977 3,055 3,390 50 28,870 

Municipality 325,175 162,543 297,427 9,362 873,338 

Neighborhood level      

Average household size 1.92 1.90 0.37 1.10 3.40 

Average property value 309,691 283,300 137,479 97,000 2,065,000 

Housing stock 2006 1541 1716 22 14,222 

Percentage multifamily 

homes 0.64 0.72 0.30 0.00 1.00 

Percentage owner occupied 0.46 0.45 0.20 0.00 0.97 

Percentage ownership 

unknown 0.01 0.00 0.02 0.00 0.36 

Percentage private rent 0.26 0.23 0.18 0.00 1.00 

Percentage single family 

homes 0.36 0.28 0.30 0.00 1.00 

Percentage social rent 0.27 0.24 0.19 0.00 1.00 

Energy label  5.00  0.00 10.00 

Leefbaarometer  5.00  1.00 8.00 

Type single family 0.15     

Note: Table 3 displays the descriptive statistics of the rental transaction data after cleaning and enriching, described 

above. Market rent is measured per square meter of usable floor area, per month in euros. Usable floor area is 

measured in square meters. Building age is measured as of the transaction date. In line with Schulz & Wersing 

(2021), the number of rooms is measured as the sum of living and bedrooms. Energy label and Leefbaarometer 

are ordinally encoded. Object volume is measured in cubic meters. An object is either single-family (=1) or 

multifamily (=0). Distance to amenities, provincial code, type, sub type, and transaction month are not displayed 

for concision. The number of transactions is 3,337. 
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Table 4. Vacant transactions descriptive statistics. 

Feature Mean Median Std. Dev. Min Max 

Vacant possession value 3,831.01 3611.11 1,278.05 1,421.05 10,000.00 

Building age 47.59 44.00 30.86 -2.00 431.00 

Days on the market 28.05 22.00 23.37 1.00 352.00 

Number of rooms 4.50 5.00 1.33 1.00 13.00 

Object volume 401.21 387.00 142.82 74.00 1613.00 

Total usable floor area 111.51 110.00 33.95 27.00 250.00 

Walk Score 67.79 71.00 19.75 0.00 100.00 

Population      

Neighborhood 3,594 2,720 3,076 35 28,870 

Municipality 164,225 89,999 204,533 931 873,338 

Neighborhood level      

Average household size 2.17 2.20 0.36 1.10 3.70 

Average property value 273,462 254,000 104,599 77,000 1,624,000 

Housing stock 1,656 1,241 1,467 20 14,222 

Percentage multifamily 

homes 0.36 0.27 0.29 0.00 1.00 

Percentage owner occupied 0.60 0.62 0.20 0.00 1.00 

Percentage ownership 

unknown 0.00 0.00 0.01 0.00 0.36 

Percentage private rent 0.13 0.09 0.12 0.00 1.00 

Percentage single family 

homes 0.64 0.73 0.29 0.00 1.00 

Percentage social rent 0.27 0.24 0.18 0.00 0.97 

Energy label  4.00  0.00 11.00 

Leefbaarometer  6.00  1.00 8.00 

Purchaser’s costs 0.99     

Type single family 0.70     

Note: Table 4 displays the descriptive statistics of the vacant transaction data after cleaning and enriching, 

described above. Vacant possession value is measured per square meter of usable floor area, in euros. Usable floor 

area is measured in square meters. Building age is measured as of the transaction date. In line with Schulz & 

Wersing (2021), the number of rooms is measured as the sum of living and bedrooms. Energy label and 

Leefbaarometer are ordinally encoded. Object volume is measured in cubic meters. Average property values are 

also measured in euros. An object is either single-family (=1) or multifamily (=0). Distance to amenities, provincial 

code, type, sub type, and transaction month are not displayed for concision. The number of transactions is 17,132. 

4.4 Variable transformation 

In line with common practice in the AVM literature, we log-transform the predicted variables VPV, 

MR, and GIM to improve the overall performance of the proposed methodologies. After prediction, we 
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retransform the predicted variables using the smearing adjustment factor introduced by Duan (1983), in 

line with Schulz & Wersing (2021) and Steurer et al. (2021), to deal with retransformation bias:  

 

𝐸(𝑉𝑃�̂�, 𝑀�̂�, 𝐺𝐼�̂�) = �̂� exp[𝑙𝑛(𝑉𝑃�̂�, 𝑀�̂�, 𝐺𝐼�̂�)] (𝟖) 

 

𝑤ℎ𝑒𝑟𝑒 �̂� =  
1

𝑛
∑ 𝑒𝑥𝑝 (휀𝑖

𝑉𝑃𝑉,𝑀𝑅,𝐺𝐼𝑀)

𝑛

𝑖=1

 

 

where the expected values of VPV, MR, and GIM are calculated by taking the exponent of the log-

transformed values and adjusted using an adjustment factor �̂�. �̂� is calculated by taking the average of 

the error term exponent values for VPV, MR, and GIM estimates, denoted as 휀.  

Finally, in line with Steurer et al. (2021), all input features have been scaled and centered to lie 

between 0 and 1 during the training and testing of the methodologies. Feature scaling is common in ML 

applications, as to not distinguish between features of lower magnitude (e.g., number of bedrooms) and 

features of higher magnitude (e.g., building age). Although tree-based methodologies are insensitive to 

feature scaling, applying it is essential to accurately compare all proposed methodologies. Without 

scaling these features, the latter type of features weighs more decisively in determining VPV, MR, and 

GIM than the former in non-tree-based methodologies. Additionally, the training time of the proposed 

methodologies decreases by using scaling. 

5. Design 

As described earlier, we will train and compare the following methodologies: HPM, RF, GB, XGB, a 

hybrid methodology comprising HPM with an XGB estimation procedure, and XGBMC. These 

methodologies will be optimized to predict the MV constituents of the SPCM to MV estimation: GIM, 

MR, and VPV16. First, we will discuss the hyperparameter optimization procedure, discussing what 

methods are adopted in tuning the methodologies. In doing so, we will also provide an overview of the 

most important tunable hyperparameters in each methodology. Finally, we elaborate on the MCs in the 

XGBMC methodology. 

5.1 Hyperparameter optimization 

Each considered methodology requires optimization of hyperparameters. Optimizing these 

hyperparameters requires a comparison of various model specifications, as the most optimal 

combination is highly dependent on the obtained data. Four approaches are feasible for optimizing 

hyperparameters, (1) manual, (2) grid search, (3) randomized search, and (4) Bayesian optimization. 

Manual optimization involves manually adjusting hyperparameters after each training and performance 

 
16 Python code used in developing each methodology are obtainable from the author. 
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evaluation iteration. This method allows the exploration of specific hyperparameter regions that seem 

promising for the problem at hand. Another commonly adopted hyperparameter optimization method is 

grid search. Grid search involves defining a set of values for each hyperparameter requiring tuning. The 

set of training trials is then determined based on assembling every possible combination of 

hyperparameter values. In comparison with manual search, this approach does not require manual 

adjustment of the hyperparameters after each iteration. Grid search does, however, suffer from the curse 

of dimensionality, as the number of combinations and thus training iterations increases exponentially 

with the number of hyperparameter values (Bergstra & Bengio, 2012). Comparable to grid search, 

randomized search, the third method, draws hyperparameter combinations from a search space. In 

contrast to grid search, however, randomized search draws independent, random draws, thus not 

suffering from the dimensionality issue described above. This contrasting feature allows randomized 

search to be more efficient in high-dimensional search spaces, compared to grid search (Bergstra & 

Bengio, 2012). Both these methods work in optimizing hyperparameters but are relatively inefficient as 

new hyperparameters are not chosen on the basis of the results of previous hyperparameter settings. In 

other words, grid and random search take independent draws from the search space and therefore do not 

learn from past iterations. 

Shahriari et al. (2015) describe the importance of methodologies learning from past iterations 

when facing a greater degree of optimization complexity. Learning from past iterations is inherent to 

Bayesian optimization, the fourth method. Bayesian optimization involves adopting a surrogate 

probability model, next to the objective function. Bayesian optimization centers on this probability 

model 𝑝(𝑠𝑐𝑜𝑟𝑒|𝑐𝑜𝑛𝑓𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛) that is updated through historical (𝑠𝑐𝑜𝑟𝑒|𝑐𝑜𝑛𝑓𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛) pairs 

(Bergstra et al., 2013). The most common surrogate probability model used in Bayesian optimization is 

the Sequential Model-Based Global Optimization (SMBO) algorithm with the Tree Parzen Estimator 

(TPE) modeling strategy. Based on Bayes’ theorem, SMBO with the TPE modeling strategy can be 

defined as (Bergstra, 2011: 4): 

 

𝑝(𝑉𝑃𝑉, 𝑀𝑅, 𝐺𝐼𝑀|𝑥) =
𝑝(𝑥|𝑉𝑃𝑉, 𝑀𝑅, 𝐺𝐼𝑀) ∗ 𝑝(𝑉𝑃𝑉, 𝑀𝑅, 𝐺𝐼𝑀)

𝑝(𝑥)
   (𝟗) 

 

𝑤ℎ𝑒𝑟𝑒 𝑝(𝑥|𝑉𝑃𝑉, 𝑀𝑅, 𝐺𝐼𝑀) = {
𝑙(𝑥)    𝑖𝑓 𝑉𝑃𝑉, 𝑀𝑅, 𝐺𝐼𝑀 < (𝑉𝑃𝑉, 𝑀𝑅, 𝐺𝐼𝑀)∗

𝑔(𝑥)     𝑖𝑓 𝑉𝑃𝑉, 𝑀𝑅, 𝐺𝐼𝑀 ≥ (𝑉𝑃𝑉, 𝑀𝑅, 𝐺𝐼𝑀)∗ 

 

Where 𝑝(𝑉𝑃𝑉, 𝑀𝑅, 𝐺𝐼𝑀|𝑥) denotes the probability of estimate VPV, MR, or GIM, given a candidate 

of hyperparameters x. In contrast to Gaussian Processes (GP, another modeling strategy; see Bergstra et 

al., 2011), TPE involves not estimating 𝑝(𝑉𝑃𝑉, 𝑀𝑅, 𝐺𝐼𝑀|𝑥) directly, but through 𝑝(𝑥|𝑉𝑃𝑉, 𝑀𝑅, 𝐺𝐼𝑀) 

and 𝑝(𝑉𝑃𝑉, 𝑀𝑅, 𝐺𝐼𝑀).  𝑝(𝑥|𝑉𝑃𝑉, 𝑀𝑅, 𝐺𝐼𝑀), in turn, is defined by the densities 𝑙(𝑥) and 𝑔(𝑥). 

Specifically, 𝑙(𝑥) is the density formed using the hyperparameter observations 𝑥 where the 
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corresponding loss was less than (𝑉𝑃𝑉, 𝑀𝑅, 𝐺𝐼𝑀)∗, the threshold value of the objective function. 

(𝑉𝑃𝑉, 𝑀𝑅, 𝐺𝐼𝑀)∗ is determined in the TPE algorithm as a quantile 𝛾 of the observed values VPV, MR, 

and GIM, such that 𝑝(𝑉𝑃𝑉, 𝑀𝑅, 𝐺𝐼𝑀 < (𝑉𝑃𝑉, 𝑀𝑅, 𝐺𝐼𝑀)∗) =  𝛾. All hyperparameter observations 𝑥 

where the value of the objective function is greater than the threshold are contained in the density 𝑔(𝑥). 

Optimization using the TPE is done through a selection function or criterium. In the case of TPE, the 

most common selection criterion is Expected Improvement (EI), defined as (Bergstra, 2011: 4): 

 

𝐸𝐼(𝑉𝑃𝑉,𝑀𝑅,𝐺𝐼𝑀)∗(𝑥) =
𝛾(𝑉𝑃𝑉, 𝑀𝑅, 𝐺𝐼𝑀)∗𝑙(𝑥) − 𝑙(𝑥) ∫ 𝑝(𝑉𝑃𝑉, 𝑀𝑅, 𝐺𝐼𝑀)𝜕(𝑉𝑃𝑉, 𝑀𝑅, 𝐺𝐼𝑀)

(𝑉𝑃𝑉,𝑀𝑅,𝐺𝐼𝑀)∗

−∞

𝛾𝑙(𝑥) + (1 − 𝛾)𝑔(𝑥)
 

∝ (𝛾 +
𝑔(𝑥)

𝑙(𝑥)
(1 − 𝛾))

−1

   (𝟏𝟎) 

 

Where the last expression denotes that hyperparameters sets x with high probability under l(x) and low 

probability under g(x) are preferred. As described in Bergstra et al. (2011), due to the tree-structured 

form of l and g shown in Equation (10) above, the TPE algorithm can draw many hyperparameter 

candidates x based on l and evaluate them according to g(x)/l(x). Each iteration results in the candidate 

of hyperparameters x* with the greatest EI. Bergstra et al. (2013) argue that adopting the surrogate 

probability model yields significant gains in overall optimization efficiency, as only the candidate of 

hyperparameters yielding the highest EI is then evaluated in the original objective function. 

 We apply the SMBO algorithm with the TPE modeling strategy to tune the hyperparameters of 

each methodology. Specifically, we obtain the aforementioned algorithm and modeling strategy using 

the Hyperopt library17. The Hyperopt library allows CV techniques, all ML methodologies described in 

this paper, and the TPE modeling strategy. These aspects of the Hyperopt library allow a relatively 

straightforward implementation of Bayesian optimization. The library does, however, require the 

specification of the distribution function for each hyperparameter. Example distribution functions 

include uniform and normal distributions. Generally, it is equitable to assume that for numerically valued 

hyperparameters, each value has equal probability to be most optimal for regression problems. This 

means that for numerically valued hyperparameters, the uniform probability distribution, or variations 

thereof, is most applicable. 

 We list the most important hyperparameters for each ML methodology tunable using Bayesian 

optimization in Table 4. As mentioned earlier, optimizing hyperparameters using Bayesian optimization 

requires setting probability distributions for each hyperparameter. These probability distributions aid 

the TPE modeling strategy in identifying promising hyperparameter values by using EI, elaborated 

above (Bergstra et al., 2011). For continuous hyperparameters, uniform distributions are most 

commonly adopted in the TPE, which we also adopt here. For categorical hyperparameters, we adopt 

 
17 Documentation on the Hyperopt library can be found here: https://github.com/hyperopt/hyperopt.  
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the choice distribution, where the algorithm decides on the hyperparameter value for each iteration. 

Finally, when hyperparameter values involve various data types (e.g., float and integer), we nest uniform 

distributions in a choice distribution. 

 

Table 4. Hyperparameters of machine learning methodologies adopted in this study. 

Methodology Hyperparameter Definition 

Random forest Bootstrap Whether or not to apply bootstrap aggregation (true/false). Setting this 

hyperparameter to false means models train without replacing the 

sample through each iteration. 

 Maximum number of 

features 

The number of features to consider when splitting individual decision 

trees at each node. 

 Maximum tree depth The maximum depth of individual decision trees; a higher maximum 

depth is equivalent to the expansion of more nodes.  

 Minimum samples leaf The minimum number of training cases (i.e., transactions) required to 

be at a leaf (i.e., terminal) node. 

 Minimum samples split The minimum number of training cases (i.e., transactions) required to 

split an internal node. 

 Number of estimators The number of decision trees in the aggregate forest.  

Gradient boosting Learning rate The learning rate determines the contribution of each tree in the 

aggregate model. The number of estimators and the learning rate faces 

a tradeoff; a higher learning rate requires a lower number of estimators 

 Maximum number of 

features 

The number of features to consider when splitting individual tree 

boosters at each node. 

 Maximum tree depth The maximum depth of individual tree boosters; a higher maximum 

depth is equivalent to the expansion of more nodes.  

 Minimum samples leaf The minimum number of training cases (i.e., transactions) required to 

end up in a leaf (i.e., terminal) node. 

 Minimum samples split The minimum number of training cases (i.e., transactions) required to 

split an internal node. 

 Number of estimators The number of boosting stages. 

 Subsample The fraction of the total training data used for training individual tree 

boosters. 

Extreme gradient 

boosting 

Alpha (α) Median-based regularization term. Higher values of alpha decrease 

sensitivity to individual weight observations. 

 Column sample by tree Similar to the maximum number of features in the RF and GB 

methodologies; the number of features to consider when splitting 

individual tree boosters at each node. 
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 Gamma (γ) Regularization term. The minimum loss reduction required to further 

split a leaf node in an individual booster tree. Higher gamma values 

decrease the chance of overfitting the training data. 

 Lambda (λ) Mean-based regularization term. Higher values of lambda decrease 

sensitivity to individual weight observations. 

 Learning rate The learning rate determines the contribution of each tree in the 

aggregate model. The number of estimators and the learning rate faces 

a tradeoff; a higher learning rate requires a lower number of estimators. 

 Maximum tree depth The maximum depth of individual tree boosters; a higher maximum 

depth is equivalent to the expansion of more nodes.  

 Minimum child weight Similar to minimum samples split in the RF and GB methodologies; 

the minimum number of training cases (i.e., transactions) needed to 

split an internal node. 

 Number of estimators The number of boosting stages. 

 Subsample The fraction of the total training data used for training individual tree 

boosters. 

Note: Table 4 displays the hyperparameters of the machine learning methodologies optimized using Bayesian 

optimization, with associated definitions. We use the Hyperopt, Scikit-Learn, and XGBoost Python libraries to 

implement the machine learning methodologies with Bayesian optimization.  

5.2 Monotonic constraints 

We develop MCs for the XGBMC methodology using the expertise of appraisers. As data on the three 

types of transactions differ, monotonically constraint features can differ per MV constituent of the 

SPCM. Additionally, MR and VPV are measured per square meter of usable floor area as described in 

Section 4.1. We will analyze the addition of MCs in the XGB methodology by comparing the proposed 

methodology to a similar, non-monotonically constraint XGB methodology. We develop MCs for ten 

features based on arguments provided by a valuation firm in the Netherlands (see Appendix 1: Envalue 

valuation firm). 

First, for MR and VPV per square meter of usable floor area, object volume and the number of 

rooms are positively constraint as these increase the attractiveness of each square meter of usable floor 

area. Specifically, properties being equal in terms of usable floor area and other aspects, but differing 

sizes of object volume and number of rooms will yield different MR and VPV per square meter of usable 

floor area. Higher object volume and more rooms, in this example, will lead to higher MR and VPV per 

square meter of usable floor area. Second, as MR and VPV are measured per square meter of usable 

floor area, total usable floor area is negatively constraint. Properties equal in most aspects, but differing 

sizes of total usable floor area, will generally yield different MR and VPV per square meter of usable 

floor area. Higher total usable floor areas result, all else being equal, in lower expected values of MR 

and VPV per square meter of usable floor area due to the lower influence of land value on total property 

value. Third, distance to amenities are negatively constraint for all three MV constituents. Specifically, 
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a larger distance to the eleven amenities is equivalent to a less attractive location, resulting in lower 

expected values of GIM, MR, and VPV. In contrast, the Walk Score is positively constraint for all three 

MV constituents. The Walk Score measures the walkability of properties to nearby amenities. As higher 

Walk Scores indicate a more attractive location, we expect, all else being equal, higher values of GIM, 

MR, and VPV. The energy label is positively constraint for all MV constituents. Higher energy labels 

indicate better energy performance, increasing the attractiveness of a property and hence, all else being 

equal, resulting in higher values of GIM, MR, and VPV. 

On the regional level, the Leefbaarometer measures the attractiveness of a district. More 

attractive districts yield higher values of GIM, MR, and VPV and are therefore positively constraint for 

all three MV constituents. Similarly, the population of a municipality is an indicator of the size of a 

municipality. Larger municipalities are more attractive and are therefore expected to yield, all else being 

equal, higher values of GIM, MR, and VPV and are therefore positively constraint for all three MV 

constituents. For MR and VPV, specifically, days on the market are negatively constraint. Days on the 

market measures the attractiveness of a property to the market. Generally, more days on the market 

indicate lower attractiveness of the property and hence, all else being equal, a lower expected MR and 

VPV per square meter of usable floor area. All the MCs per feature and MV constituent of the SPCM 

are displayed in Table 5. 

 

Table 5. Monotonic constraints in the extreme gradient boosting with monotonic constraints methodology for the 

gross income multiplier, and market rent and vacant possession value measured per square meter of usable floor 

area. 

Feature Monotonic constraint 

(GIM) 

Monotonic constraint 

(MR) 

Monotonic constraint 

(VPV) 

Days on the market - Negative Negative 

Distance to amenities Negative Negative Negative 

Energy label Positive Positive Positive 

Leefbaarometer Positive Positive Positive 

Municipality population Positive Positive Positive 

Number of rooms - Positive Positive 

Object volume - Positive Positive 

Total residential units Positive - - 

Total usable floor area - Negative Negative 

Walk Score Positive Positive Positive 

Note: Table 5 displays monotonic constraints in the extreme gradient boosting with monotonic constraints 

methodology. Monotonic constraints are developed using appraiser expertise at a valuation firm (see Appendix 1: 

Envalue valuation firm) and provided for each market value constituent: gross income multiplier, market rent, and 

vacant possession value. Distance to amenities entails distance to all eleven amenities considered in this paper. 

We use the XGBoost Python library to implement monotonic constraints in the extreme gradient boosting 

methodology. We analyze the addition of monotonic constraints in the extreme gradient boosting methodology by 
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comparing the proposed methodology to a similar, non-monotonically constraint extreme gradient boosting 

methodology. 

5.3 Performance measurement 

To accurately compare methodologies in our case study, we adopt various performance metrics. In line 

with Steurer et al. (2021), we use seven metrics to measure accuracy. Each of these metrics satisfies the 

symmetry condition, meaning interchanging the actual and predicted values do not change the absolute 

values of each metric, nor its interpretation. The metrics used are of the seven classes average bias, 

absolute difference, absolute ratio, squared difference, squared ratio, percentage ratio, and quantile ratios 

(Steurer et al., 2021). Additionally, we describe how we measure the reliability and explainability of 

each methodology. 

Average bias. In contrast to other metrics of accuracy and reliability, average bias metrics can 

be both negative and positive. To measure average bias, we adopt the log median prediction error 

(LMDPE). The closer this metric is to zero, the better the performance of a methodology: 

 

𝐿𝑀𝐷𝑃𝐸 = 𝑚𝑒𝑑 [ln (
𝑀𝑉𝑖

𝑉𝑃𝑉,𝑀𝑅,𝐺𝐼𝑀

𝑀�̂�𝑖
𝑉𝑃𝑉,𝑀𝑅,𝐺𝐼𝑀)]       ∀ i = 1 … n   (𝟏𝟏) 

 

Where 𝑛 represents the total number of observations, 𝑀𝑉𝑉𝑃𝑉,𝑀𝑅,𝐺𝐼𝑀 the actual and 𝑀�̂�𝑉𝑃𝑉,𝑀𝑅,𝐺𝐼𝑀 the 

predicted values of the MV constituents in the SPCM of observation 𝑖. LMDPE is median-based, 

meaning the measure is more robust to large prediction errors, favoring methodologies that have low 

average bias. Symmetry is imposed in the LMDPE metric through 𝑙𝑛 (
𝑀𝑉𝑖

𝑉𝑃𝑉,𝑀𝑅,𝐺𝐼𝑀

𝑀�̂�𝑖
𝑉𝑃𝑉,𝑀𝑅,𝐺𝐼𝑀). 

Absolute difference. Absolute difference ratios measure the average absolute error of the 

predictions by a methodology. In comparison to squared difference metrics (discussed below), absolute 

difference metrics limit the influence of large prediction errors. To measure the absolute difference, we 

adopt the mean absolute error (MAE): 

 

𝑀𝐴𝐸 =
1

𝑛
∑|𝑀𝑉𝑖

𝑉𝑃𝑉,𝑀𝑅,𝐺𝐼𝑀 − 𝑀�̂�𝑖
𝑉𝑃𝑉,𝑀𝑅,𝐺𝐼𝑀|

𝑛

𝑖=1

   (𝟏𝟐) 

 

Where 𝑛 represents the total number of observations, |𝑀𝑉𝑉𝑃𝑉,𝑀𝑅,𝐺𝐼𝑀  | the absolute actual and 

|𝑀�̂�𝑉𝑃𝑉,𝑀𝑅,𝐺𝐼𝑀  | the absolute predicted values of the MV constituents in the SPCM of observation 𝑖. 

MAE is a common measure adopted in the forecasting literature (see, e.g., McCluskey et al., 2013; 

Zurada et al., 2011), satisfying the symmetry condition through |𝑀𝑉𝑖
𝑉𝑃𝑉,𝑀𝑅,𝐺𝐼𝑀 − 𝑀�̂�𝑖

𝑉𝑃𝑉,𝑀𝑅,𝐺𝐼𝑀|. 

 Absolute ratio. In comparison to absolute difference metrics, absolute ratio metrics measure 

the prediction error as ratios, providing for a more relative performance metric. As with the absolute 
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difference metric, absolute ratio metrics are less sensitive to outliers. We measure the absolute ratio 

using a symmetric adaptation to a widely adopted metric in the literature, the mean absolute prediction 

error (MAPE). Specifically, we adopt the max-min mean absolute prediction error (mmMAPE): 

 

𝑚𝑚𝑀𝐴𝑃𝐸 =
1

𝑛
∑ (

max (𝑀𝑉𝑖
𝑉𝑃𝑉,𝑀𝑅,𝐺𝐼𝑀 , 𝑀�̂�𝑖

𝑉𝑃𝑉,𝑀𝑅,𝐺𝐼𝑀)

min (𝑀𝑉𝑖
𝑉𝑃𝑉,𝑀𝑅,𝐺𝐼𝑀 , 𝑀�̂�𝑖

𝑉𝑃𝑉,𝑀𝑅,𝐺𝐼𝑀)
− 1)

𝑛

𝑖=1

   (𝟏𝟑) 

 

Where 𝑛 represents the total number of observations, 𝑀𝑉𝑉𝑃𝑉,𝑀𝑅,𝐺𝐼𝑀 the actual and 𝑀�̂�𝑉𝑃𝑉,𝑀𝑅,𝐺𝐼𝑀 the 

predicted values of the MV constituents in the SPCM of observation 𝑖. mmMAPE, compared to MAPE, 

imposes symmetry by replacing 
𝑀𝑉𝑖

𝑉𝑃𝑉,𝑀𝑅,𝐺𝐼𝑀

𝑀�̂�𝑖
𝑉𝑃𝑉,𝑀𝑅,𝐺𝐼𝑀 − 1 with the max-min operation shown in Equation 13. 

Squared difference. Squared difference ratios heavily penalize large prediction errors. This 

metric is especially important in analyzing the attractiveness of the proposed methodologies to valuation 

practice, as (individual) large prediction errors are unfavorable. To measure the squared difference, we 

adopt the RMSE: 

 

𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑(𝑀𝑉𝑖

𝑉𝑃𝑉,𝑀𝑅,𝐺𝐼𝑀 − 𝑀�̂�𝑖
𝑉𝑃𝑉,𝑀𝑅,𝐺𝐼𝑀)

2
𝑛

𝑖=1

= √
1

𝑛
∑(ê𝑖

2)
2

𝑛

𝑖=1

   (𝟏𝟒) 

 

Where 𝑛 represents the total number of observations, 𝑀𝑉𝑉𝑃𝑉,𝑀𝑅,𝐺𝐼𝑀 the actual and 𝑀�̂�𝑉𝑃𝑉,𝑀𝑅,𝐺𝐼𝑀 the 

predicted values of the MV constituents in the SPCM and ê the error term of observation 𝑖. 

 Squared ratio. Squared ratios, in line with squared difference metrics, heavily penalize large 

prediction errors. Steurer et al. (2021) argue that the symmetry condition is even more important for 

squared ratio metrics compared to absolute ratio metrics. Asymmetric absolute ratio metrics (e.g., 

MAPE), weigh prediction errors in the left and right tail of the error distribution asymmetrically. 

Squaring these errors, they argue, amplifies this asymmetry error. Within this case study, we adopt the 

log root mean squared error  (LRMSE):  

 

𝐿𝑅𝑆𝑀𝐸 = √
1

𝑛
∑ [𝑙𝑛 (

𝑀𝑉𝑖
𝑉𝑃𝑉,𝑀𝑅,𝐺𝐼𝑀

𝑀�̂�𝑖
𝑉𝑃𝑉,𝑀𝑅,𝐺𝐼𝑀)]

2𝑛

𝑖=1

  (𝟏𝟓) 

 

Where 𝑛 represents the total number of observations, 𝑀𝑉𝑉𝑃𝑉,𝑀𝑅,𝐺𝐼𝑀 the actual and 𝑀�̂�𝑉𝑃𝑉,𝑀𝑅,𝐺𝐼𝑀 the 

predicted values of the MV constituents in the SPCM of observation 𝑖. Symmetry is imposed in the 

LRSME metric, similar to the LMDPE metric, through 𝑙𝑛 (
𝑀𝑉𝑖

𝑉𝑃𝑉,𝑀𝑅,𝐺𝐼𝑀

𝑀�̂�𝑖
𝑉𝑃𝑉,𝑀𝑅,𝐺𝐼𝑀). 
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 Percentage ratio. Percentage ratios count the percentage of prediction error ratios that are 

outside a pre-specified limit. Practitioners frequently use these ratios when assessing valuation accuracy. 

For instance, if 20 is the result of a percentage ratio with a pre-specified limit of 10 percent, that means 

the error rate is above 10 percent in 20 percent of the cases. Percentage ratios, therefore, incorporate the 

uncertainty associated with value estimates described in Section 2.1. To measure the percentage ratio, 

we adopt the max-min percentage error range (mmPER): 

 

𝑚𝑚𝑃𝐸𝑅 = 100 |
max (𝑀𝑉𝑖

𝑉𝑃𝑉,𝑀𝑅,𝐺𝐼𝑀 , 𝑀�̂�𝑖
𝑉𝑃𝑉,𝑀𝑅,𝐺𝐼𝑀)

min (𝑀𝑉𝑖
𝑉𝑃𝑉,𝑀𝑅,𝐺𝐼𝑀 , 𝑀�̂�𝑖

𝑉𝑃𝑉,𝑀𝑅,𝐺𝐼𝑀)
− 1| > 𝑥       ∀ i = 1 … n  (𝟏𝟔) 

 

Where 𝑛 represents the total number of observations, 𝑀𝑉𝑉𝑃𝑉,𝑀𝑅,𝐺𝐼𝑀 the actual and 𝑀�̂�𝑉𝑃𝑉,𝑀𝑅,𝐺𝐼𝑀 the 

predicted values of the MV constituents in the SPCM of observation 𝑖, and 𝑥 determines the cut-off 

percentage error rate. Manual valuations are expected to not deviate more than 10% from the actual MV 

(Crosby, 2000), meaning we will use that as the cut-off percentage error rate for the mmPER ratio.  

 Quantile ratio. AVMs for real estate valuation require insight into the dispersion of the 

prediction error distribution, which quantile ratios measure. Quantile ratios are more robust metrics of 

dispersion in contrast to variance-based metrics such as squared difference ratios, providing a valuable 

additional performance metric (Steurer et al., 2021). To measure the quantile ratio, we adopt the inter-

quartile range in ratios (IQRat): 

 

𝐼𝑄𝑅𝑎𝑡 = 𝑙𝑛 (
𝑀𝑉𝑖

𝑉𝑃𝑉,𝑀𝑅,𝐺𝐼𝑀

𝑀�̂�𝑖
𝑉𝑃𝑉,𝑀𝑅,𝐺𝐼𝑀)

75

− 𝑙𝑛 (
𝑀𝑉𝑖

𝑉𝑃𝑉,𝑀𝑅,𝐺𝐼𝑀

𝑀�̂�𝑖
𝑉𝑃𝑉,𝑀𝑅,𝐺𝐼𝑀)

25

       ∀ i = 1 … n   (𝟏𝟕) 

 

Where 𝑛 represents the total number of observations, 𝑙𝑛 (
𝑀𝑉𝑖

𝑉𝑃𝑉,𝑀𝑅,𝐺𝐼𝑀

𝑀�̂�𝑖
𝑉𝑃𝑉,𝑀𝑅,𝐺𝐼𝑀)

75

 the 75th percentile and 

𝑙𝑛 (
𝑀𝑉𝑖

𝑉𝑃𝑉,𝑀𝑅,𝐺𝐼𝑀

𝑀�̂�𝑖
𝑉𝑃𝑉,𝑀𝑅,𝐺𝐼𝑀)

25

 the 25th percentile of the natural logarithm of the actual values 𝑀𝑉𝑉𝑃𝑉,𝑀𝑅,𝐺𝐼𝑀 and 

predicted values 𝑀�̂�𝑉𝑃𝑉,𝑀𝑅,𝐺𝐼𝑀 of the MV constituents in the SPCM of observation 𝑖. Symmetry is 

imposed in the IQRat metric, similar to LMDPE, through 𝑙𝑛 (
𝑀𝑉𝑖

𝑉𝑃𝑉,𝑀𝑅,𝐺𝐼𝑀

𝑀�̂�𝑖
𝑉𝑃𝑉,𝑀𝑅,𝐺𝐼𝑀). 

 Reliability. We measure reliability using a novel method for estimating the error distribution 

across folds and repeats. Specifically, we calculate the standard error of each accuracy performance 

metric described above across all 30 CV iterations (elaborated in Section 3.1). Based on the standard 

errors, we can construct error distributions for each accuracy performance metric. In doing so, we align 

with comparable efforts to measure reliability besides standard prediction intervals, such as conformal 

prediction intervals in Schulz & Wersing (2021), the Diebold-Mariano test statistic in Hinrichs et al. 

(2021), and bootstrap resampling in Krause et al. (2020). 
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Explainability. We measure explainability using insights from interpretable ML, where 

explainability is understood as “given a certain audience, explainability refers to the details and reasons 

a model gives to make its functioning clear or easy to understand” (Arrieta et al., 2020: 85). In our case 

study, the audience consists of both appraisers and their respective clients. We, therefore, measure 

explainability of the proposed methodologies by considering how well appraisers can understand and 

explain these methodologies to clients. Based on an overview by Arrieta et al. (2020), we focus on the 

explainability of each methodology in terms of algorithmic transparency, decomposability, and 

simulatability. Algorithmic transparency refers to the ability of model users (e.g., appraisers) to 

understand the process of producing any given output from input data. Decomposability is more 

stringent in that methodologies should be understandable without requiring additional tools. Finally, 

simulatability refers to the readability of a model, hence being a measure of complexity. Each of these 

three classes contains its predecessors; a simulatable methodology is therefore also decomposable and 

algorithmically transparent. We rank each methodology in terms of these measures from an appraiser’s 

perspective.  

6. Results 

6.1 Gross income multiplier 

Table 8 provides the accuracy and reliability per methodology and performance metric for the 

investment transaction data, where the most accurate models according to each metric are highlighted 

in bold. The table shows a general increase in performance across all metrics for more flexible 

methodologies. Using our novel method for measuring reliability, we find all methodologies to have 

high reliability, with low standard errors for each performance metric18. In terms of accuracy, we observe 

the largest relative differences in the central tendency (average bias) metric (LMDPE). Specifically, 

central tendency is lowest for the GB methodology, with the XGB methodology performing 33.8% 

worse and the XGBMC methodology performing 58.8% worse than the GB methodology. GB is 

therefore most symmetric in bias and robust to outliers according to the LMDPE metric. Differences 

between the GB, XGB, and XGBMC methodologies are relatively small for the remaining metrics. 

Accuracy in terms of dispersion (MAE) is the highest for the XGB methodology, with both the GB and 

XGBMC methodologies performing 0.7% worse than the XGB methodology. For the absolute ratio 

(mmMAPE), the XGB methodology also performs better in terms of both accuracy and reliability 

compared to other methodologies. Specifically, the GB methodology performs 0.6% worse and the 

XGBMC methodology performs 1.2% worse than the XGB methodology on this metric. Differences 

 
18 Low standard errors in cross-validation indicate minor differences between hold-out sample performance 

across folds. Minor differences in hold-out sample performance can be due to various reasons; one of these 

reasons is the use of balanced datasets through our data cleaning procedures. For an elaboration on data balance 

and its implications, see Gelman & Hill (2007: 199–231). 
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between these three methodologies are small compared to the hybrid methodology that performs 62.4% 

worse than the XGB methodology on this metric. 

The more established squared difference metric (RMSE), penalizing large errors more heavily, 

favors the XGB methodology in terms of accuracy, but differences are relatively small to the XGBMC 

methodology that performs 1.2% worse on this metric. Similar patterns hold for the squared ratio metric 

(LRMSE), where XGB is deemed more accurate with small differences compared to the XGBMC 

methodology. In terms of the percentage ratio (mmPER), 53.7% of predictions are outside ± 10% of the 

GIM for the XGB methodology, while XGBMC performs slightly worse with 54.1% of predictions 

falling outside the pre-specified deviation limit. Finally, in contrast to other metrics, the dispersion of 

the prediction error (IQRat) is the lowest for the XGBMC methodology, with a relatively small 0.5% 

difference from the XGB methodology on this metric. 

 
Table 8. Gross income multiplier - Accuracy and reliability per methodology. 

Methodologies LMDPE MAE mmMAPE LRMSE RMSE mmPER IQRat 

HPM -0.0327 

(0.0062) 

4.364 

(0.173) 

0.216 

(0.009) 

0.240 

(0.008) 

7.435 

(0.008) 

0.628 

(0.014) 

0.264 

(0.014) 

RF -0.0504 

(0.0069) 

3.935 

(0.218) 

0.195 

(0.009) 

0.224 

(0.009) 

7.068 

(0.009) 

0.571 

(0.022) 

0.207 

(0.022) 

GB -0.0260 

(0.0052) 

3.477 

(0.133) 

0.166 

(0.005) 

0.196 

(0.006) 

6.367 

(0.006) 

0.553 

(0.013) 

0.210 

(0.013) 

XGB -0.0348 

(0.0052) 

3.454 

(0.180) 

0.165 

(0.007) 

0.193 

(0.007) 

6.132 

(0.007) 

0.537 

(0.019) 

0.197 

(0.019) 

XGBMC -

0.0413 

(0.0053) 

3.477 

(0.179) 

0.167 

(0.007) 

0.195 

(0.007) 

6.203 

(0.007) 

0.541 

(0.017) 

0.196 

(0.017) 

Hybrid 

methodology 

-0.0444 

(0.0082) 

5.262 

(0.202) 

0.268 

(0.010) 

0.287 

(0.010) 

9.119 

(0.009) 

0.678 

(0.012) 

0.310 

(0.012) 

Note: The dependent variable is the log-transformed gross income multiplier, adjusted using Duan’s (1983) 

adjustment factor before calculating performance metrics. Standard errors are calculated using permutation tests 

and are displayed in parentheses. The most accurate methodologies according to each metric are highlighted in 

bold. 

 

Explainability differs for each methodology. Empirical methodologies, like the baseline HPM proposed 

in this paper, use statistical inference to determine how the output is related to input. Additionally, the 

uncertainty of the estimates can be determined using probability theory. Predictions made by ML 

methodologies, on the other hand, are not statistically interpretable due to the many parameters that 

relate the output to input. To approximate the statistical inference techniques used in econometric 

methodologies, we determine feature importance using permutation tests, a feature importance 



 41 

technique19. Specifically, for the hold-out sample in the first iteration of the CV procedure described in 

Section 3.1, we calculate the relative importance of each feature in three consecutive steps. First, we 

randomly shuffle data points in one input feature while keeping the other input features constant. 

Second, we calculate new predictions of the MV constituents with the shuffled data points for one of 

the input features. Third, we calculate feature importance by computing the change in the forecasting 

performance compared to the unshuffled data predictions.  

The ten most contributing features in the case of the GIM are displayed in Figures 11 and 12 

below20. As can be seen in the figures, total theoretical rental income, municipality population, average 

property value on the neighborhood level, and whether a house is owner-occupied rank first in one or 

two of the methodologies. Specifically, total theoretical rental income ranks highest for the HPM and 

GB methodologies, the municipality population for the RF methodology, average property value on the 

neighborhood level for the XGB and XGBMC methodologies, and owner-occupied housing status for 

the hybrid methodology21. Other high-ranking features are housing stock on the neighborhood level, 

whether a house is socially rented, total usable floor area, the transaction month, distance to the nearest 

highway, and the Leefbaarometer.  

 

 

Figure 11. Hedonic pricing model (left), random forest (middle), and gradient boosting (right) feature importance 

in predicting the gross income multiplier. Feature importance is determined using permutation tests (see Saarela 

& Jauhiainen (2021) for derivations). 

 
19 Various feature importance techniques exist that seek to determine the relative importance of features in 

determining the predictions made by machine learning methodologies. See Saarela & Jauhiainen (2021) for 

derivations and comparison of these techniques. 
20 For the gross income multiplier and the other market value constituents, scales of the figures differ; feature 

importance can therefore not be compared between methodologies. 
21 We calculate feature importance for the hybrid methodology during the extreme gradient boosting estimation 

procedure. 
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Figure 12. Extreme gradient boosting (left), extreme gradient boosting with monotonic constraints (middle), and 

hybrid methodology (right) feature importance in predicting the gross income multiplier. Feature importance is 

determined using permutation tests (see Saarela & Jauhiainen (2021) for derivations). 

6.2 Market rent 

Table 9 provides the accuracy and reliability per methodology and performance metric for the rental 

transaction data, where the most accurate models according to each metric are highlighted in bold. 

Similar to the investment transaction data, we observe a general increase in performance across all 

metrics for more flexible methodologies. All methodologies show high reliability, with low standard 

errors for each performance metric. In terms of specific methodologies and in contrast to the investment 

transaction data, the GB methodology performs best across all metrics. In line with the investment 

transaction data, we observe the largest relative differences in the central tendency (average bias) metric. 

Specifically, central tendency is lowest for the GB methodology, with the XGB methodology 

performing 4.3% worse and the XGBMC methodology performing 25.6% worse than the GB 

methodology. GB is therefore most symmetric in bias and robust to outliers according to the LMDPE 

metric. In contrast to the investment transaction data, however, other metrics also favor the GB 

methodology with small differences with the XGB and XGBMC methodologies. Specifically, accuracy 

in terms of dispersion (MAE) is the highest for the GB methodology, with the XGB methodology 

performing 1.4% worse and the XGBMC methodology performing 2.5% worse than the GB 

methodology. In terms of the absolute ratio (mmMAPE), the GB methodology also performs better in 

terms of accuracy compared to other methodologies. Both the XGB and XGBMC methodologies 

perform 0.6% worse than the GB methodology on this metric. In line with the investment transaction 

data, differences between these three methodologies are small compared to the hybrid methodology that 

performs 61.2% worse than the GB methodology on this metric. 

In terms of the squared ratio metric (LRMSE) that penalizes large errors more heavily, the GB 

methodology is again favored over other methodologies. Differences are relatively small, however, to 

the XGB methodology that performs 2.0% worse and the XGBMC methodology that performs 3.3% 

worse on this metric. Similar patterns hold for the squared difference metric (RMSE),  where GB is 

deemed more accurate with small differences compared to the XGB and XGBMC methodologies. In 
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terms of the percentage ratio (mmPER), 48.1% of predictions are outside ± 10% of the MR for the GB 

methodology, 48.8% for the XGB methodology, and 49.1% of predictions falling outside the pre-

specified deviation limit for the XGBMC methodology. Finally, the dispersion of the prediction error 

(IQRat) is lowest for the GB methodology, with a relative small difference of 0.5% from the XGB and 

XGBMC methodologies on this metric. 

 

Table 9. Market rent - Accuracy and reliability per methodology. 

Methodologies LMDPE MAE mmMAPE LRMSE RMSE mmPER IQRat 

HPM -0.0151 

(0.0014) 

2.346 

(0.023) 

0.158 

(0.002) 

0.181 

(0.002) 

3.190 

(0.002) 

0.558 

(0.006) 

0.219 

(0.006) 

RF -0.0126 

(0.0010) 

2.134 

(0.033) 

0.142 

(0.002) 

0.165 

(0.002) 

2.889 

(0.002) 

0.532 

(0.007) 

0.206 

(0.007) 

GB -0.0117 

(0.0011) 

1.961 

(0.015) 

0.129 

(0.001) 

0.153 

(0.001) 

2.691 

(0.001) 

0.481 

(0.005) 

0.183 

(0.005) 

XGB -0.0122 

(0.0009) 

1.988 

(0.015) 

0.132 

(0.001) 

0.156 

(0.001) 

2.730 

(0.001) 

0.488 

(0.005) 

0.184 

(0.005) 

XGBMC -0.0147 
(0.001) 

2.010 
(0.016) 

0.133 
(0.001) 

0.158 
(0.001) 

2.759 
(0.001) 

0.491 
(0.004) 

0.184 
(0.004) 

Hybrid 

methodology 

-0.0339 

(0.002) 

3.193 

(0.039) 

0.222 

(0.003) 

0.242 

(0.002) 

4.306 

(0.002) 

0.665 

(0.006) 

0.295 

(0.006) 

Note: The dependent variable is the log-transformed market rent, adjusted using Duan’s (1983) adjustment factor 

before calculating performance metrics. Standard errors are calculated using permutation tests and are displayed 

in parentheses. The most accurate methodologies according to each metric are highlighted in bold. 

 

The relative feature importance for the ten most contributing features in determining MR is calculated 

using permutation tests as described in Section 6.1 and displayed in Figures 13 and 14 below. As can be 

seen in the figures, whether a house is of type single family, total usable floor area, and days on the 

market rank highest in one or several methodologies. Specifically, whether a house is of type single 

family ranks highest for the HPM methodology, total usable floor area ranks highest for the RF, GB, 

XGB, and XGBMC methodologies, and days on the market ranks highest for the hybrid methodology. 

Other high-ranking features include whether a house is of subtype corner house and terraced house, 

municipality population, average property value on the neighborhood level, building age, and the energy 

label. 
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Figure 13. Hedonic pricing model (left), random forest (middle), and gradient boosting (right) feature importance 

in predicting the market rent. Feature importance is determined using permutation tests (see Saarela & Jauhiainen 

(2021) for derivations). 

 

 

Figure 14. Extreme gradient boosting (left), extreme gradient boosting with monotonic constraints (middle), and 

hybrid methodology (right) feature importance in predicting the market rent. Feature importance is determined 

using permutation tests (see Saarela & Jauhiainen (2021) for derivations). 

6.3 Vacant possession value 

Table 10 provides the accuracy and reliability per methodology and performance metric for the vacant 

transaction data, where the most accurate models according to each metric are highlighted in bold. 

Similar to the other MV constituents, we observe a general increase in performance across all metrics 

for more flexible methodologies. All methodologies show high reliability, with low standard errors for 

each performance metric. In terms of specific methodologies and in line with the rental transaction data, 

the GB methodology performs best across most metrics. In contrast to the rental transaction data, 

however, central tendency is lowest for the XGB methodology according to the LMDPE metric, 

meaning XGB is most symmetric in bias and robust to outliers. In line with the other MV constituents, 

we observe the largest differences in this metric, where the GB and XGBMC methodologies perform 

8.5% and 7.3% worse than the XGB methodology in terms of central tendency, respectively. Other 

metrics favor the GB methodology, with small differences with the XGB and XGBMC methodologies. 

Specifically, accuracy in terms of dispersion (MAE) is the highest for the GB methodology, although 

differences are small with the XGB methodology performing 1.1% worse and the XGBMC 
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methodology performing 1.8% worse than the GB methodology on this metric. In terms of the absolute 

ratio (mmMAPE), the GB methodology also performs better in terms of accuracy compared to other 

methodologies. Differences are relatively small, however, with the XGB methodology performing 1.2% 

worse and XGBMC methodology performing 1.8% worse than the GB methodology on this metric. 

Differences between these three methodologies are small compared to the hybrid methodology that 

performs 89% worse than the GB methodology on this metric. 

In terms of both the squared ratio metric (LRMSE) and squared difference metric (RMSE) that 

penalize large errors more heavily, the GB methodology is again favored over other methodologies. For 

both metrics, however, differences are small compared to the XGB and XGBMC methodologies. 

Specifically, the XGB methodology performs 0.7% worse on the LRMSE metric and 0.9% worse on the 

RMSE metric compared to the GB methodology. Additionally, the XGBMC methodology performs 

1.4% worse on the LRMSE metric and 1.6% worse on the RMSE metric compared to the GB 

methodology. In terms of the percentage ratio (mmPER), 44.2% of predictions are outside ± 10% of the 

VPV for the GB methodology, 44.6% for the XGB methodology, and 45.0% of predictions falling 

outside the pre-specified deviation limit for the XGBMC methodology. Finally, the dispersion of the 

prediction error (IQRat) is the lowest for the GB methodology, with a relative small difference of 1.2% 

from the XGB methodology and 1.8% from the XGBMC methodology. 

 
Table 10. Vacant possession value - Accuracy and reliability per methodology. 

Methodologies LMDPE MAE mmMAPE LRMSE RMSE mmPER IQRat 

HPM -0.0145 

(0.0006) 

530.669 

(2.430) 

0.154 

(0.001) 

0.178 

(0.001) 

774.693  

(0.001) 

0.554 

(0.002) 

0.216 

(0.002) 

RF -0.0113 
(0.0006) 

469.019 
(4.172) 

0.139 
(0.001) 

0.162 
(0.001) 

642.345 
(0.001) 

0.514 
(0.005) 

0.198 
(0.005) 

GB -0.0089 

(0.0004) 

402.438 

(1.678) 

0.117 

(0.001) 

0.141 

(0.001) 

558.984  

(0.001) 

0.442 

(0.002) 

0.166 

(0.002) 

XGB -0.0082 

(0.0004) 

407.027 

(2.037) 

0.119 

(0.001) 

0.142 

(0.001) 

563.746 

(0.001) 

0.446 

(0.003) 

0.168 

(0.003) 

XGBMC -0.0088 

(0.0004) 

409.632 

(1.804) 

0.119 

(0.001) 

0.143 

(0.001) 

567.947  

(0.001) 

0.450 

(0.002) 

0.169 

(0.002) 

Hybrid 

methodology 

-0.0306 

(0.0009) 

795.639 

(6.332) 

0.237 

(0.002) 

0.257 

(0.002) 

1243.809 

(0.002) 

0.684 

(0.003) 

0.313 

(0.003) 

Note: The dependent variable is the log-transformed vacant possession value, adjusted using Duan’s (1983) 

adjustment factor before calculating performance metrics. Standard errors are calculated using permutation tests 

and are displayed in parentheses. The most accurate methodologies according to each metric are highlighted in 

bold. 
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The relative feature importance for the ten most contributing features in determining VPV is calculated 

using permutation tests as described in Section 6.1 and displayed in Figures 15 and 16 below. As can be 

seen in the figures, whether a house is of type single family, average property value, and total usable 

floor area rank highest in one or several methodologies. Specifically, whether a house is of type single 

family ranks highest for the HPM methodology, average property value ranks highest for the RF, GB, 

XGB, and XGBMC methodologies, and total usable floor area ranks highest for the hybrid methodology. 

Other high-ranking features include building age, energy label, municipality population, object volume, 

and whether a house is of sub type terraced house and semi-detached house. 

 

 

Figure 15. Hedonic pricing model (left), random forest (middle), and gradient boosting (right) feature importance 

in predicting the vacant possession value. Feature importance is determined using permutation tests (see Saarela 

& Jauhiainen (2021) for derivations). 

Figure 16. Extreme gradient boosting (left), extreme gradient boosting with monotonic constraints (middle), and 

hybrid methodology (right) feature importance in predicting the vacant possession value. Feature importance is 

determined using permutation tests (see Saarela & Jauhiainen (2021) for derivations). 

6.4 Overall comparison 

Based on the accuracy and reliability results in the previous sections, we summarize the performance of 

each methodology in Table 11. Additionally, explainability is compared on the basis of the algorithmic 

transparency, decomposability, and simulatability described in Arrieta et al. (2020) from an appraiser’s 

perspective. In terms of accuracy and reliability, we conclude GB to perform best in the case of MR and 
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VPV. The XGB and XGBMC methodologies, however, perform very similarly for both MV constituents 

with small relative differences in most metrics. In the case of the GIM, the XGB methodology performs 

best across most metrics. For this MV constituent too, however, we observe small relative differences 

on most metrics with the GB and XGBMC methodologies. Comparing XGBMC to XGB, specifically, 

we find the XGBMC methodology to perform slightly worse with small relative differences in most 

accuracy metrics and MV constituents and reliability being generally very similar. The RF methodology 

ranks fourth in terms of both accuracy and reliability across most metrics and MV constituents, followed 

by the HPM methodology. The hybrid methodology structurally ranks last in terms of both accuracy 

and reliability with large relative differences in most metrics and MV constituents compared to best-

performing methodologies. 

 In terms of explainability, we argue for the following differences between methodologies. First, 

due to its interpretable and uncomplex specification, we argue the HPM to be both algorithmically 

transparent, decomposable, and simulatable. Appraisers can understand predictions due to the reporting 

of regressor values (algorithmically transparent), the readability (decomposability), and direct 

understanding of the prediction process (simulatability) due to the uncomplex nature of the HPM. 

Second, the decision-tree-based methodologies potentially meet similar requirements but lack all three 

explainability dimensions due to their complexity. Specifically, due to the ensemble of decision trees in 

the RF, GB, XGB, and hybrid methodologies, appraisers are no longer able to wholly understand 

predictions made by these methodologies without requiring mathematical background (simulatability), 

readability is lost due to model complexity (decomposability), and appraisers are no longer able to obtain 

a direct understanding of the prediction process in each methodology (algorithmic transparency). The 

XGBMC methodology, however, is argued to meet some requirements for algorithmic transparency. 

Specifically, MCs provide semantic meaning to appraisers on how shape-constrained attributes 

contribute to predictions. Appraisers can therefore understand the prediction process beyond that offered 

in similar, non-constrained methodologies. Table 11 summarizes the accuracy, reliability, and 

explainability per methodology. 
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Table 11. Overall comparison of methodologies according to their accuracy, reliability, and explainability 

(measured through algorithmic transparency, decomposability, and simulatability).  

Methodologies Accuracy Reliability Algorithmic 

transparency 

Decomposability Simulatability 

HPM - - + + + 

RF +/- +/- - - - 

GB + + - - - 

XGB + + - - - 

XGBMC + + +/- - - 

Hybrid 

methodology 

- - - - - 

Note: Table 11 presents the overall comparison of the methodologies per market value constituent in terms of 

accuracy, reliability, and explainability. Accuracy and reliability are determined based on the results shown in the 

previous sections and summarized as best (+), semi-best (+/-), and worst-performing (-). Explainability is 

compared on algorithmic transparency, decomposability, and simulatability and based on conceptual arguments 

from an appraiser’s perspective. The methodologies are summarized as satisfying (+), semi-satisfying (+/-), or not 

satisfying (-) the explainability dimension. 

7. Conclusions and discussion 

In this paper, we conducted a case study of valuing buy-to-let properties in the Netherlands by 

forecasting the three constituents of MV in the SPCM: GIM, MR, and VPV. We focused specifically on 

developing a valuation methodology that incorporates appraiser expertise through MCs, the XGBMC 

methodology, to investigate its potential in terms of accuracy, explainability, and reliability. The 

proposed appraiser-based methodology was compared on these three aspects to a similar, non-

monotonically constraint XGB methodology, the econometric HPM, RF, GB, and a hybrid methodology 

comprising HPM with an XGB estimation procedure. Several important insights arise from our case 

study. 

 First, we compared the accuracy and reliability of the considered methodologies using seven 

symmetric metrics proposed by Steurer et al. (2021). Depending on the metric and MV constituent, best-

performing methodologies differ, but we identify several general trends. Specifically and as argued in 

Steurer et al. (2021), accuracy and reliability increase when more transaction data are available. Results 

were therefore generally better in the case of VPV compared to MR and GIM. In terms of specific 

methodologies, the most accurate and reliable methodology for MR and VPV was the GB methodology, 

although differences were marginal with the XGB and XGBMC methodologies for most metrics. This 

finding can be attributed to the use of relatively balanced transaction data for all three MV constituents 

within our case study, which also resulted in the overall high reliability across metrics and MV 

constituents. In future research, it can be interesting to investigate how the XGBMC compares to 

existing methodologies using imbalanced transaction data. Additionally, as the GB methodology was 
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generally found most accurate in this study, the incorporation of MCs or similar regularization efforts 

in the GB methodology is an interesting topic for future research.  

In the case of GIM, the XGB methodology was found to be most accurate and reliable for most 

metrics. The appraiser-based XGBMC is similar to the XGB methodology in terms of reliability, but 

slightly worse than the XGB methodology in terms of accuracy for most metrics and MV constituents, 

thus indicating the cost of imposing constraints on the model specification. The hybrid methodology 

performed worse than other considered methodologies in terms of both accuracy and reliability in the 

case of all three MV constituents. The considered hybrid specification shows signs of overfitting training 

data, therefore performing worse on unseen transactions. More complex model specifications and other 

estimation procedures can help prevent this issue. This is an area of future research. 

 Second, explainability is difficult to objectively measure and compare between methodologies. 

Within this paper, we took an appraiser’s perspective in conceptually determining the level of 

explainability of each methodology. Based on three categories of explainability proposed in Arrieta et 

al. (2020), we conclude the XGBMC methodology, apart from the econometric HPM, to offer the most 

explainability from an appraiser’s perspective. Imposing MCs can therefore be a valuable tool in making 

MV predictions more transparent to both appraisers and clients. Explainability was measured, however, 

using conceptual arguments as empirical measures are lacking in the literature. We leave the exploration 

of empirical explainability to future research.  

Third, although the XGBMC methodology was shown to be slightly less accurate than the 

unconstrained XGB methodology, the XGBMC methodology is equally reliable and more explainable 

according to the explainability dimensions adopted in this study. Appraisers, therefore, can benefit from 

a slightly less accurate but equally reliable and more explainable model specification, compared to 

existing methodologies. Increasing the explainability of methodologies without incurring the loss of 

accuracy is a topic for future research.  

Finally, according to Scheurwater (2017), it is unlikely that AVMs will entirely substitute 

manual valuations in the near future. Specifically, current legal frameworks dictate that appraisers 

should be able to understand and explain valuation methodologies. As described in the AVM roadmap 

outlined by the RICS (2021), it is currently unclear when AVM output is within the scope of 

international appraisal guidelines (i.e. International Valuation Standards; IVSC, 2019) due to 

explainability issues. Because of insufficient explainability, appraisers are unable to understand the 

valuation process through AVMs, rendering them inappropriate for professional use. Nonetheless, the 

proposed methodology in this study improves on the explainability of existing methodologies, bringing 

it closer to professional applicability. Although AVMs are unlikely to substitute manual valuations in 

the near future, they can complement professional appraisers in creating a more efficient valuation 

process. 
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Ethical considerations 

The research described in this paper is conducted by considering several ethical principles. Based on the 

principles put forth by the VSNU (2018), transparency was guaranteed by reporting on all aspects of 

the research process. This includes, first, a thorough, separate chapter on the data preparation phase, 

including sources and decisions made in terms of data management. Additionally, detailed descriptions 

of methodologies used in this paper are contained in the appendices. Independence and responsibility 

are ensured by taking all steps of the research independently. Supervision was provided by both the 

supervisor at the University of Groningen and Envalue (see Appendix 1: Envalue valuation firm). Both 

supervisors, however, were not involved in conducting the research itself, and responsibility for its 

outcomes remains by the author. Responsibility was further taken for the obtained data by treating it 

confidentially, including the decision to not publicly share the data obtained. Finally, all general ethical 

guidelines and standards as put forth by VSNU (2018) were adhered to during the research process. 
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Appendix 1: Envalue valuation firm 

This thesis is written in collaboration with Envalue, a Dutch valuation firm focusing on commercial real 

estate valuations. Envalue is a recently established valuation firm (Est. 2020) with a strong emphasis on 

data-driven valuations. In contrast to the traditional valuation process, Envalue strives to conduct 

valuations within a short timeframe by focusing on various data-driven solutions. First, Envalue builds 

and expands databases for each commercial valuation segment (e.g., buy-to-let, office). These efforts 

entail a focus on both data quantity (i.e., number of transactions) and quality (i.e., extensive, and valid 

information on each transaction). Second, Envalue strives for data-driven valuation solutions to 

complement the valuer. These data-driven valuation solutions are reflected in the development of model-

based valuations using the expertise of the valuer, or the so-called hybrid approach to valuations. 

Finally, streamlining valuations by automating all routine processes. For example, appraisers receive 

comparable references through algorithmic calculations and aspects of valuation reports are automated 

using data-driven connectivity (e.g., through application programming interfaces (APIs)), enabling the 

valuer to focus on the non-routine aspects of commercial real estate valuations. 

 Envalue is part of the BORON Valuation Group, a collective of six data-driven real estate firms. 

One closely related firm within the BORON Valuation Group is Property Pass. Originally developed by 

Deloitte (then called AXIOM), Property Pass is a digital data-sharing platform providing a central 

database of verified real estate data. Specifically, Property Pass enables sharing of structured rental data 

with banks in compliance with the European Central Bank’s current guidelines. Property Pass is 

currently in a pilot phase with three major Dutch banks (i.e., ABN AMRO, ING Group, Rabobank) 

using SBR Nexus22. The central database resulting from these efforts is made available to other firms in 

the BORON Valuation Group, including Envalue. In line with the developments at Envalue, this 

database ensures readily available, extensive, and verified data to streamline the valuation process. 

 
22 SBR Nexus develops and provides market standards for sharing professional data. For an overview of their 

conduct, see https://www.sbrnexus.nl/over-ons. 


