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Abstract 

Scholars consider artificial intelligence (AI) a general purpose technology that enables regions to 
diversify into new economic activities and facilitates green transition. Limited literature 
investigates how AI knowledge diffuses spatially. Investigating collaborative inventions of AI in 
European regions, this research examines how collaborative knowledge regarding AI technology 
development and technology application diffuses between and within regions during 2011-2020. 
Researchers adopt a logit regression method to estimate effects on collaboration formation of AI 
development. Results indicate that interregional collaborations of co-inventors between NUTS 2 
regions are positively related to the establishment of collaborative ties for AI development. As for 
AI application, researchers adopt a Zero-inflated Negative Binomial regression method, and results 
suggest that not only intra-regional but also interregional collaborations across neighbouring 
regions increase the intensity of co-innovations of AI application. Our results contribute to 
diffusion theories suggested by Rogers and Hägerstrand by taking into consideration the nature of 
exchanged knowledge (i.e. AI development and AI application) in the diffusion process. Thus, 
innovation policies may consider the spatial dimension of policy schemes that target the 
development and application of AI technologies.  

Keywords: Collaborative Innovation; Geographical Proximity; Technology Diffusion; AI Patents; 
European Regions 
JEL Classification O33  
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1 Introduction 

    Artificial intelligence (AI) has been one of the most important fields for innovation. AI, as 
General Purpose Technologies (GPTs), has been developing for a long period of time and applied 
in various industries such as education, energy, health services, etc. (Petralia 2020). Because of 
these features, AI is necessary for Europe’s ‘twin transition’ including regional diversification and 
green transition (Janssen and Abbasiharofteh 2022). However, European countries are greatly 
lagging behind other developed counterparts (e.g. the U.S. and Japan) in AI patents, even though 
the number of global AI patents skyrocketed in the last few decades (Iori et al. 2021; Dernis et al. 
2021). To this end, a programme named Horizon Europe is initiated in Europe to support socially 
and technologically positive influences of AI development and applications (European 
Commission, n.d.). This programme aims to build trustworthy AI prioritising social benefits and 
to improve European regions’ competitiveness. 
    Many existing studies find that collaborative ties among inventors foster innovation by 
combining various knowledge together (Abbasiharofteh and Broekel 2021). To date there has been 
a lack of empirical studies investigating how AI knowledge diffuses spatially for innovation. This 
research aims to fill this research gap about how the establishment of interregional and intra-
regional collaborations influence AI knowledge diffusion between co-inventors across regions. 
There are two types of AI knowledge, for instance, AI technology development based on the 
Science-Technology-Innovation (STI) mode and AI technology application in the Doing, Using 
and Interacting (DUI) mode (Alhusen and Bennat 2021). This research examines the question of 
how two types of AI knowledge diffuse through collaborative innovation networks across regions. 
We analyse 1,221 NUTS-2-region pairs with AI collaborations by adopting a logit regression 
method for AI development collaborations and a Zero-inflated Negative Binomial regression 
method for AI application. Results indicate that interregional collaborations support the formation 
of AI development relations, while both intra- and inter-regional collaborations between 
neighbouring regions increase the intensity of AI application co-innovations. These findings 
contribute to diffusion theories of Rogers (1962) as well as Hägerstrand (1968) and suggestions 
for regional innovation policies.   
    This research is structured as follows. Section 2 discusses two main diffusion theories suggested 
by Rogers (1962) and Hägerstrand (1968). In addition, this section builds on the extant literature 
on the innovation modes (Janssen and Abbasiharofteh 2022) to reconcile the two theories in one 
theoretical framework. Section 3 introduces research processes such as data preparation, data 
cleaning, construction of variables and regression methods. Section 4 presents regression results. 
Section 5 discusses the contributions to knowledge diffusion theories, suggests recommendations 
for innovation policies and concludes the paper.   
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2 Spatial and relational dimensions of knowledge diffusion 

2.1 Geographical and social proximity 
    Geographical and social proximity between inventors determine local knowledge diffusion. 
Social proximity indicates that individuals are closely connected because of the same enterprise or  
similar cultural backgrounds (Boschma 2005; Agrawal et al. 2008; Johansson and Karlsson 2019). 
Rogers (1962) illuminates that various individuals absorb knowledge from their peers through 
local communication channels. These local channels greatly influence the rate of adoption of 
innovations, including interpersonal networks. Interpersonal diffusion networks connecting mostly 
geographically close individuals promote knowledge spillovers directly or indirectly (Rogers 
1962). These individuals who are spatially and socially close to each other are more likely to be 
integrated within the diffusion networks, compared with other weakly linked pairs of distant 
counterparts. In this diffusion theory (Rogers 1962), geographical proximities and social 
connectivity are critical for the establishment of diffusion networks among inventors. 
    Social proximity between inventors facilitates the adoption of technologies across space. 
Hägerstrand (1968) investigates the unevenly distributed adoption of innovation to answer 
research questions: “Where are adopters of original innovation located?” and “Why do adopters 
locate in specific areas?”. Similar to Roger’s theory, Hägerstrand mentions that private 
information obtained from face-to-face conversations between inventors contributes to the 
adoption of new technologies. For instance, size and colocation of farms influence spatial 
distribution of adopters using agricultural innovation. Differently, migration of inventors and 
Information and Communication Technology infrastructure greatly facilitate the diffusion of 
innovative knowledge across space rather than only locally. In this case, the adoption is subject to 
a distance decay that the frequency of migration and telephone calls between inventors in different 
areas decreases as their geographical distances increase. Hägerstrand (1968) investigates 
neighbourhood effects of innovation diffusion between socially close inventors, whereas Rogers 
(1962) examines face-to-face interactions between spatially close individuals diffusing tacit 
knowledge. There is no agreement of which proximity dominates knowledge diffusion. 
    Complex knowledge production, on the one hand, requires vertical integration among local 
innovative actors, for instance, communications and computer software in large cities (Balland et 
al. 2019, 2020; Haller and Rigby 2020). However, these studies conceal influences of interregional 
networks. On the other hand, inter-regional collaborations stimulate innovative activities by 
spreading codified knowledge (Lundvall 2016). Reconciling this argument, Lengyel et al. (2020) 
find that knowledge of original innovation transfers to distant areas at the beginning based on 
hierarchical diffusion, and subsequently diffuses locally by contagious diffusion over the life-cycle 
of this innovative technology. Nevertheless, limited research investigates how the nature of 
exchanged knowledge interacts with the knowledge diffuses within and between regions. 

2.2 The nature of knowledge and its diffusion 
    Knowledge pieces of patents are different in nature. Basic research of General Purpose 
Technologies (GPTs) is conducted based on Science-Technology-Innovation (STI) mode for 
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technology development. Innovation happens in this mode through co-innovation networks among 
public research institutes and enterprises in different regions (Lundvall and Rikap 2022). Taking 
advantage of the basic research, private sectors seek opportunities to implement these innovative 
technologies in products and local markets based on the Learning-by-Doing, -Using and -
Interacting (DUI) mode (Mazzucato 2014; Lundvall 2016). Technology development is achieved 
based on the STI mode by facilitating the diffusion of scientific knowledge, whilst inventors 
encourage technology application by transferring tacit knowledge in the DUI mode (Alhusen et al. 
2021). More particularly, artificial intelligence (AI) technologies as a type of GPTs are strongly 
complementary to novel technologies for development, and applied in a wide range of products 
(Petralia 2020), for instance, AI based on local ICT knowledge bases (Xiao and Boschma 2021). 
    Channels determine how knowledge is diffused spatially. global pipelines across clusters 
intensify interactions between local innovative actors and distant inventors by transmitting 
codified knowledge, and local buzz facilitates knowledge diffusion regarding emerging 
technologies among local inventors (Bathelt et al. 2004). The combination of the STI mode with 
distant diffusion and the DUI mode with local diffusion promotes technological progress, for 
instance, technology development and technology application (Alhusen and Bennat 2021). In brief, 
global pipelines, which are consistent with the diffusion theory of Hägerstrand (1968), support 
technology development in the STI mode, and local buzz, which aligns with the theory of Rogers 
(1962), facilitates technology applications in the DUI mode (Bathelt et al. 2004).  

2.3 Technology development  
    Collaborations between inventors within regions stimulate the knowledge production of 
technology development. On the one hand, inventors with shorter geographical distances tend to 
spread more technological knowledge, whilst spatial and social proximity have negative 
interaction effects on knowledge spillovers (Agrawal et al. 2008). Maggioni et al. (2007) find that 
geographical spillovers exert greater effects on collaborative patenting activities than social 
networks between distant innovative centres. Lundvall (2016) mentions that spatially distant 
inventors may have difficulties in decoding technological knowledge without face-to-face contact. 
Zhou et al. (2017) find that spatial proximity significantly facilitates knowledge transfer within 
less developed regions in China in ICT industries, but insignificantly within developed regions.  
    Balland et al. (2020) conclude that the concentration and diffusion of technological knowledge 
are supported by economic and knowledge foundations of large cities but not well through ICT 
infrastructure. Scientific knowledge with a longer existence in patents has a higher level of 
concentration in large cities/technopoles. Technopolis refers to a new type of agglomeration where 
local R&D innovations are connected with ‘excellent’ universities closely (Lundvall 2016). For 
instance, AI patenting activities of Chinese or American tech-giants tend to be concentrated in 
global technopoles and apply for new patents (Lundvall and Rikap 2022).  
    Hypothesis 1: Intra-regional collaborations encourage knowledge diffusion of technology 
development 
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    On the other hand, networks connecting innovative actors contribute to knowledge spillovers 
across space (Kilkenny 2015), whilst employees concentrated within developed areas are more 
productive by learning with each other (Roca and Puga 2017). Kilkenny (2015) mentions that 
inventors in large cities tend to share knowledge with distant researchers by maintaining their 
social connections with previous enterprises. Van der Wouden and Rigby (2019) illuminate that 
innovative actors in specialised areas are more sensitive to cognitive distance rather than 
geographical distance when co-innovating with partners in other urban areas. Studies find that 
knowledge networks have been intensified by global pipelines as digital technologies make it more 
effective to collaborate and exchange innovative knowledge remotely (Bathelt et al. 2004; Paunov 
et al. 2019).  
    Hypothesis 2: Interregional collaborations facilitate knowledge diffusion of technology 
development 

2.4 Technology application 
    Tacit knowledge is another source of learning in the DUI mode, which requires face-to-face 
interactions between innovative actors. These actors concentrate in large cities to share talent pools, 
sufficient knowledge bases and economic infrastructure (Zheng 1998; Wheeler 2003; Brakman et 
al. 2019). For instance, Wang and Bu (2010) conclude that ICT services grow intensively in 
developed regions in China by adopting the methods of global and local spatial autocorrelation. 
Paunov et al. (2019) mention that ICT patents not only concentrate in developed cities in OECD 
economies, but also increase the concentration of total patenting activities in these top cities. This 
contribution is attributed to the benefit generated by ICT patents in large cities, for instance, wide 
application of ICT technologies in various industries.  
    Kaplinsky and Kraemer-Mbula (2022) illustrate that the adoption of emerging ICT in Africa 
improves innovative potentials of local informal sectors in geographical centres. Local 
organisations are more likely to establish codes of conduct and mutual trust, which promotes 
experience-based knowledge diffusion between suppliers and customers (Lundvall 2016). Without 
face-to-face contact, it is difficult for suppliers to fully understand and utilise new technologies 
from scientific collaboration (Haus-Reve et al. 2019). More particularly, Ter Wal (2013) finds that 
more collaborations within a cluster increasingly facilitate coherent local networks which foster 
more intensive patenting activities in each five-year time period. 
    Hypothesis 3: Intra-regional collaborations facilitate knowledge diffusion of technology 
application. 

    Some emerging technologies may be transferred inter-regionally. Although AI professionals  
proactively adopt AI technologies in local sectors, some of them absorb AI knowledge between 
distant areas in codified forms based on the global pipelines (Yu, Liang and Xue 2021). Some IT 
companies establish R&D departments in global technopoles to co-innovate with international 
organisations via their corporate networks (Lundvall and Rikap 2022). These R&D enterprises 
licence state-of-the-art technologies back to their home country and local market based on 
organisational proximity. Organisational proximity refers to relationships between agents or 
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enterprises based on market rules, formal and contractual agreements (Lagendijk and Lorentzen 
2007). De Noni, Orsi and Belussi (2018) find that collaborative innovation between developed 
regions with sufficient knowledge bases and lagging-behind NUTS 2 regions contributes to higher 
innovation performances of these less developed regions by analysing co-patents from the OECD 
REGPAT database. However, according to diffusion models of Hägerstrand (1968), the proportion 
of adoptions decreases dramatically as spatial distances from innovation centres increase because 
information of complex knowledge greatly loses over distance (Haggett and Cliff 2005; Balland 
et al. 2020). A theoretical framework is created based on four hypotheses (see Table 1).  
    Hypothesis 4: Distant interregional collaborations restrain knowledge diffusion of technology 
application. 

Table 1 Theoretical Framework of Collaborations and Knowledge Diffusions 

 Technology development Technology application 

Intra-regional collaborations  YES 
(Hypothesis 1) 

 YES 
(Hypothesis 3) 

Interregional collaborations YES 
(Hypothesis 2) 

 NO 
(Hypothesis 4) 

Source: Own elaborations 
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3 Collaborative invention between/within European regions  

This section consists of three parts such as data, construction of variables and methods. Figure 1 
below illustrates the empirical setting.  

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 1 A Flowchart of Research Design 
Source: Own elaborations  

3.1 Data preparation 
3.1.1 Collaborative patents 
    This research analyses collaborative innovation of AI patents (thereafter, AI co-patents) from 
the OECD REGPAT database (version: 2022)2. Based on the AI co-patents, the researcher aims to 
investigate effects of types of collaborations on the nature of knowledge diffusion (i.e. AI 
technology development and AI application). The OECD REGPAT database includes patents 
granted by the EPO and the Patent Cooperation Treaty (PCT). This research retrieves patents in 
countries of Europe (including EU27, UK, Norway and Switzerland) from not only the EPO but 
also PCT in order for sufficient observations for regression analyses. 

 
2 The OECD REGPAT database (version: 2022): https://www.oecd.org/sti/intellectual-property-statistics-and-
analysis.htm. Accessed 1 April 2022 
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    This patent data has more completed addresses than that of patents from the Worldwide Patent 
Statistical Database (PATSTAT), the United States Patent and Trademark Office (USPTO) and 
World Intellectual Property Organisation (WIPO), for instance, NUTS region codes (Maraut et al. 
2008). This data includes information of EPO application number, NUTS 2 and 3 level code, 
region’s share, inventor’s share, EPO filing year, CPC codes. There are no ethical issues about 
data privacy because everyone can download this secondary data (i.e. Patents) from the OECD 
REGPAT database. 

3.1.2 Socio-economic factors 
    Regional socio-economic data (e.g. GDP, Population and R&D employment) between 2001-
2015 are downloaded from Eurostat 3 and complemented by the data from the OECD 4. Regional 
GDP per capita is computed by dividing GDP per year by total population in each year and taking 
the average for each region. 
    Additionally, data missing not at random (e.g. GDP, population and the number of R&D 
employees) in some NUTS 2 regions is treated differently, for example, by imputation and carrying 
over values in previous years. As for the missing data of UKI1 (Inner London) and UKI2 (Outer 
London), each is replaced by a half of corresponding data of UKI (i.e. NUTS 1 region) from the 
OECD. Missing data of Switzerland (e.g. R&D employees in CH01, CH02, …, and CH07) are 
complemented by data from the World Bank5. We take one seventh of the national average for 
every NUTS 2 region in Switzerland. 

3.2 Data filtering 
3.2.1 Cooperative Patent Classification (CPC) codes 
    The entire process of filtering data is shown in Figure 2 below. The researcher derives AI-related 
CPC codes from WIPO PATENTSCOPE Artificial Intelligence Index (n.d.)6. Next, AI patents are 
filtered out among the retrieved patents from the REGPAT database (version: 2022) by matching 
technology codes of patents with the AI-related CPC codes in R software. These filtered AI patents 
are categorised as AI technology development (thereafter, AI TD) if their CPC codes are all AI-
related, whilst those with both AI-related and -unrelated CPC codes are classified as AI technology 
applications (thereafter, AI TA).  
    However, some CPC codes for several AI technologies are lost, for instance, machine learning 
and natural language processing. Thus, to cover a wider range of AI-related patents, the researcher 
adds all CPC codes at the 4-digit level under G16 (i.e., Information and Communication 
Technology, specially adapted for specific application fields). In this way, more ICT(/AI)-related 

 
3 Eurostat data: 
https://ec.europa.eu/eurostat/web/regions/data/database?p_p_id=NavTreeportletprod_WAR_NavTreeportletprod_IN
STANCE_BQqmHeCfV1BE&p_p_lifecycle=0&p_p_state=normal&p_p_mode=view. Accessed 15 April 2022  
4 OECD data: https://www.oecd.org/regional/regional-statistics/. Accessed 15 April 2022 
5 Researchers in R&D (per million people): 
https://data.worldbank.org/indicator/SP.POP.SCIE.RD.P6?end=2015&start=2001. Accessed 15 April 2022 
6 PATENTSCOPE Artificial Intelligence Index: 
https://www.wipo.int/tech_trends/en/artificial_intelligence/patentscope.html. Accessed 1 April 2022 
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patents are filtered out and classified as AI TA, while other AI patents with only AI-related CPC 
codes are categorised as AI TD. Additionally, two maps are created in ArcGIS to illustrate spatial 
patterns of co-inventors regarding AI TD and AI TA across NUTS 2 regions.  

3.2.2 Country codes 
    The researcher further filters these AI patents as within- or outside-Europe according to country 
codes. Next, the researcher selects AI patents with at least two inventors of which one is located 
in one of 30 countries in Europe (inc. UK, Norway and Switzerland); inventors from other 
countries are excluded from the data set. Among these AI patents, some with only one inventor in 
Europe are excluded from the data frame because this research investigates collaborative 
innovation between two inventors both located in NUTS 2 regions (thereafter, NUTS-2-region 
pairs) in the 30 European countries. In this way, AI co-patents with at least two inventors in Europe 
are selected, and the quality of each AI co-patent is assumed to be similar.  

3.2.3 NUTS 2 region codes 
    The spatial unit of this research is NUTS 2 regions because this unit is neither too large nor 
small. NUTS 2 regions, which are different from NUTS 1 and 3 regions, do not include national 
boundaries and do not include spatial units within cities. NUTS 2 region codes are extracted from 
information of AI co-patents. The researcher excludes repeated region codes of each AI co-patent 
and calculates the sum of the number of region codes for each co-patent. In this way, AI co-patents 
with more than 1 region code are classified as interregional collaborations, whilst the other with 
only one region code is defined as intra-regional collaborations.  
    NUTS-2-region pairs are created according to combinations of every two NUTS 2 regions for 
each AI co-patents. These pairs represent bilateral collaborations between/within NUTS regions 
in which AI inventors collaborate and diffuse knowledge. Put it differently, we allocate the 
intelligent property of co-inventors to NUTS 2 regions to analyse knowledge diffusion across 
regions (Boschma et al. 2015). Then, the researcher calculates the sum of each NUTS-2–region 
pair based on all AI co-patents and obtains observations of analysis as the final dataset. These 
NUTS-2-region pairs are used to conduct regression analyses of tie formation of AI TD and AI 
TA co-innovation on inter-/ intra-regional collaborations. Regression results justify proposed 
hypotheses and answer research questions. R codes for data filtering and regression analysis are 
available from the corresponding researcher on reasonable request. 
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Fig. 2 A Flowchart of Data filtering 
Source: Own elaborations  

3.3 Construction of variables 
3.3.1 Dependent variables 
    One dependent variable: 𝐷𝐸𝑉𝐸𝐿𝑂𝑃𝑀𝐸𝑁𝑇  is a dummy variable of whether each NUTS-2-
region pair with AI co-patents has AI development collaborations or not between 2011-2020. The 
reason why we use a dummy variable rather than a count one is that the number of region-pairs 
with AI development co-patents is low and can only perform regression of its discrete variable. As 
shown in Table 2 of descriptive analysis7, there are 1,221 observations (i.e. NUTS-2-region pairs), 
but many observations have the value of 0 for two dependent variables: 𝐷𝐸𝑉𝐸𝐿𝑂𝑃𝑀𝐸𝑁𝑇 and 
𝐴𝑃𝑃𝐿𝐼𝐶𝐴𝑇𝐼𝑂𝑁 (i.e. 1202 pairs (98.44％) and 229 pairs (18.76％) with 0 values, respectively). 
Another dependent variable: 𝐴𝑃𝑃𝐿𝐼𝐶𝐴𝑇𝐼𝑂𝑁  is the count variable of the frequency of AI 
application collaborations in each NUTS-2-region pair with AI co-patents during 2011-2020.  
    Some studies choose a five-year time window because patents are granted by EPO/PCT several 
years after co-inventors collaborate and apply for patents (Ter Wal 2013; Menzel et al. 2017). 
However, we choose a ten-year period between 2011-2020 to acquire more AI co-patents for 
regression analysis. In this ten-year period, the number of observations is larger in a group of 
analysis than that in preceding and shorter time-windows. At last, the researchers conduct 
robustness tests after regression analysis by changing the time window of dependent variables to 
a shorter period: 2011-2015 (Fleming et al. 2007; Janssen and Abbasiharofteh 2022).  

 
7 Descriptive statistics: The researchers use the stargazer R package from Hlavac & Marek (2022) to conduct 
descriptive analysis. 
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                                     𝐷𝐸𝑉𝐸𝐿𝑂𝑃𝑀𝐸𝑁𝑇!,# = {0, 1}                                           (1) 

                                       𝐴𝑃𝑃𝐿𝐼𝐶𝐴𝑇𝐼𝑂𝑁!,# = 𝑁!                                                (2) 

where 1 of 𝐷𝐸𝑉𝐸𝐿𝑂𝑃𝑀𝐸𝑁𝑇!,# refers to the formation of AI TD collaboration ties in each NUTS-
2-region pair (𝑝) from 2011 to 2020, whilst 0 is the opposite; 𝑁!  is the total number of the 
formation of AI TA collaborative relations for each pair (𝑝) in the same time period. 

Table 2 Descriptive analysis 
 

Statistic N Mean St. Dev. Min Max 

 

DEVELOPMENT 1,221 0.02 0.1 0 1 

APPLICATION 1,221 52.4 574.2 0 19,306 

InterRegpc 1,221 0.7 1.0 0.0 5.2 

IntraRegpc 1,221 0.3 1.1 0.0 7.7 

DISTANCES 1,221 0.3 0.4 0 1 

POP 1,221 27.9 0.9 24.5 31.1 

GDPpc 1,221 20.8 0.5 16.7 23.1 

RnDpc 1,221 4.5 1.5 -2.5 7.1 

POP_dif 1,221 11.9 4.2 0.0 15.4 

GDPpc_dif 1,221 7.9 2.9 0.0 11.4 

POP_1_sq 1,221 193.9 17.2 149.8 241.1 

POP_2_sq 1,221 196.4 17.5 149.8 241.1 

POP1_X_POP2 1,221 194.8 12.8 149.8 241.1 

COMPONENT 1,221 0.90 0.30 0 1 
 

Source: Own elaborations  

3.3.2 Independent variables 
    This research examines the effects of interregional and intraregional collaborations on 
collaborative innovation of AI TD and AI TA. The formation of patent collaborations between or 
within NUTS 2 regions act as a proxy of knowledge diffusion; this variable is better than patent 
citations in terms of avoiding the selection and information bias (Jaffe 2000, 2019; Henderson et 
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al. 2005). There are many relevant studies about collaborative innovation. For instance, De Noni 
et al. (2017) mention that innovative collaborations between NUTS 2 regions contribute to 
knowledge creation and diffusion. Santoalha (2019) investigates the effects of collaborative 
innovations within and between regions on technological diversification at the NUTS 2 region 
level based on co-patents from the REGPAT database.  
    We use 𝐼𝑛𝑡𝑒𝑟𝑅𝑒𝑔𝑝𝑐!,#$1 and 𝐼𝑛𝑡𝑟𝑎𝑅𝑒𝑔𝑝𝑐!,#$1 as two independent variables in the time period 
between 2001-2010 (i.e. t-1). The reason why the researchers choose a previous time window is 
that inventors tend to maintain previous collaborations diffusing knowledge (Santoalha 2019), and 
this data avoids endogeneity issues between dependent and independent variables in the same 
period. These two variables are adjusted by the population of NUTS-2-region pairs to circumvent 
the multicollinearity issue with the control variable of population (POP) (see equation (9)). 

                  𝐼𝑛𝑡𝑒𝑟𝑅𝑒𝑔𝑝𝑐!,#$1 = 𝑙𝑜𝑔( %!,#$1
&'!!,#$1

∗ %%,#$1
&'!%,#$1

+ 1)                               (3) 

                  𝐼𝑛𝑡𝑟𝑎𝑅𝑒𝑔𝑝𝑐!,#$1 = 𝑙𝑜𝑔(( %!!,#$1
&'!!,#$1

)2 + 1)                                         (4) 

where 𝑒(,#$1 or 𝑒),#$1 is the number of interregional collaborations in which co-inventors in the 
NUTS 2 region (i or j) involve during the time period of (t-1) (i.e. 2001-2010); 𝑒((,#$1 refers to the 
number of intra-regional collaborations within region (i) in (t-1); 𝑃𝑜𝑝(,#$1  or 𝑃𝑜𝑝),#$1  is the 
average population of the NUTS 2 region (i or j) between 2001-2010. 

    Except for the independent variables of 𝐼𝑛𝑡𝑒𝑟𝑅𝑒𝑔𝑝𝑐!,#$1 and 𝐼𝑛𝑡𝑟𝑎𝑅𝑒𝑔𝑝𝑐!,#$1, there is another 
explanatory factor: 𝐷𝐼𝑆𝑇𝐴𝑁𝐶𝐸𝑆 which investigates the effect of Euclidian distance between the 
centroids of NUTS 2 regions in which inventors are located on the creation of AI TD and AI TA 
co-innovation (Mitze and Strotebeck 2019; Lengyel et al. 2020). This variable refers to whether 
the distance (𝑑!) of each NUTS-2-region pair (p) is larger than that of the 75 quantile group among 
all observations.  

                                      𝐷𝐼𝑆𝑇𝐴𝑁𝐶𝐸𝑆 = {0, 1}                                                   (5) 

where 1 of 𝐷𝐼𝑆𝑇𝐴𝑁𝐶𝐸𝑆, which is larger than the 75 quantile group refers to distant knowledge 
diffusion, and 0 indicates local diffusion which is lower than the 75 quantile group. 

3.3.3 Control variables 
    There are additional driving forces behind the formation of AI TD and AI TA collaborations, 
for instance, technological relatedness (Boschma et al. 2015), structural as well as socio-economic 
factors (Rodríguez-Pose et al. 2021) and network related variables (Abbasiharofteh et al. 2020). 
However, variables of technological relatedness are highly correlated with GDP and the number 
of inventors (Boschma et al. 2015). Thus, this research includes 𝐺𝐷𝑃𝑝𝑐, 𝐺𝐷𝑃𝑝𝑐_𝑑𝑖𝑓, 𝑅𝑛𝐷𝑝𝑐, 
𝑃𝑂𝑃 , 𝑃𝑂𝑃_𝑑𝑖𝑓 , 𝑃𝑂𝑃_1_𝑠𝑞 , 𝑃𝑂𝑃_2_𝑠𝑞  and 𝐶𝑂𝑀𝑃𝑂𝑁𝐸𝑁𝑇  as control variables excluding 
technological relatedness. These control variables are all within the time period between 2001-
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2010 (i.e. t-1) same as the independent variables (Santoalha 2019). Calculations of each variable 
are shown below.  
    The prosperousness of cities/regions support knowledge generation, for instance, GDP per 
capita (Balland et al. 2020). Rodríguez-Pose et al. (2021) mention that developed cities/regions 
with higher GDP per capita develop a more sophisticated innovation system for patenting activities 
than their lagging counterparts. In this innovation system, GDP per capita of regions and their 
difference in GDP per capita determine the extent to which knowledge diffuses across regions 
(Autant-Bernard, Fadairo and Massard 2013). In this research, 𝐺𝐷𝑃𝑝𝑐!,#$1 and 𝐺𝐷𝑃𝑝𝑐_𝑑𝑖𝑓!,#$1 
are included in regression models.  

                         𝐺𝐷𝑃𝑝𝑐!,#$1 = 𝑙𝑜𝑔(𝐺𝑑𝑝(,#$1 ∗ 𝐺𝑑𝑝),#$1)                                       (6) 

                         𝐺𝐷𝑃𝑝𝑐_𝑑𝑖𝑓!,#$1 = 𝑙𝑜𝑔(|𝐺𝑑𝑝(,#$1 − 𝐺𝑑𝑝),#$1| + 1)                      (7) 

where 𝐺𝑑𝑝(,#$1 or 𝐺𝑑𝑝),#$1 indicate the average of GDP per capita of NUTS 2 regions (i or j) in 
the time period of (t-1); 
    Knowledge foundations of cities/regions exert effects on local diffusion of complex knowledge 
(Balland et al. 2020). On the one hand, human capital (e.g. Educated employees and specialised 
workers) diffuse tacit knowledge with each other to collaboratively innovate (Van der Wouden 
and Rigby 2019). On the other hand, lagging regions with less human capital or employees with 
lower education levels may have lower absorptive capacities to learn from inventors in other 
regions (Crescenzi 2021). Thus, a control variable of 𝑅𝑛𝐷𝑝𝑐!,#$1 is included to control the effect 
of human capital. This variable refers to the magnitude of R&D personnel in each NUTS-2-region 
pair, which is adjusted by the total population of each region (i and i or j) for coping with the 
multicollinearity issue.  

                         𝑅𝑛𝐷𝑝𝑐!,#$1 = 𝑙𝑜𝑔[( *+!,#$1
&'!!,#$1

) ∗ ( *+%,#$1
&'!%,#$1

)]                                      (8) 

where 𝑅𝐷(,#$1 or 𝑅𝐷),#$1indicates the average number of R&D employees in NUTS 2 regions (i 
or j) in the time period of t-1 (i.e. 2001-2010); 𝑃𝑜𝑝(,#$1 or 𝑃𝑜𝑝),#$1 is the average population of 
the NUTS 2 region (i or j) in (t-1).  
    Population of regions determines the number of patent applications to some extent. Much 
research includes population as control variables to investigate effects on technological 
collaborations (Miguelez and Moreno 2013). This research includes not only total population of 
region-pairs (i.e., 𝑃𝑂𝑃), but also their differences in population (𝑃𝑂𝑃_𝑑𝑖𝑓) and quadratic terms of 
population (𝑃𝑂𝑃_1_𝑠𝑞  and 𝑃𝑂𝑃_2_𝑠𝑞 ). The reason is that agglomeration and urbanisation 
economies impose effects on knowledge spillovers non-linearly (Roca and Puga 2017).           

                            𝑃𝑂𝑃!,#$1 = 𝑙𝑜𝑔(𝑃𝑜𝑝(,#$1 ∗ 𝑃𝑜𝑝),#$1)                                     (9)      

                        𝑃𝑂𝑃_𝑑𝑖𝑓!,#$1 = 𝑙𝑜𝑔(|𝑃𝑜𝑝(,#$1 − 𝑃𝑜𝑝),#$1| + 1)                        (10)  
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                             𝑃𝑂𝑃_1_𝑠𝑞!,#$1 = [𝑙𝑜𝑔(𝑃𝑜𝑝(,#$1)]2                                         (11) 

                             𝑃𝑂𝑃_2_𝑠𝑞!,#$1 = [𝑙𝑜𝑔(𝑃𝑜𝑝),#$1)]2                                         (12) 

where 𝑃𝑜𝑝(,#$1 or 𝑃𝑜𝑝),#$1 similar with other control variables is described in 3.3.2. 
    Many existing studies in the field of regional innovation investigate effects of structural 
properties of co-innovation networks on the number of patents granted in regions (Abbasiharofteh 
et al. 2020). The largest component of knowledge networks, which intensify among connected 
clusters, impose detrimental effects on the spillovers of extensive and breakthrough knowledge 
(Lucena-Piquero and Vicente 2019). Thus, a control variable (𝐶𝑂𝑀𝑃𝑂𝑁𝐸𝑁𝑇) is included in 
regression models in this research. 𝐶𝑂𝑀𝑃𝑂𝑁𝐸𝑁𝑇 is a dummy variable of whether each NUTS-2-
region pair is within the largest component of their collaborative networks or not.  

                                       𝐶𝑂𝑀𝑃𝑂𝑁𝐸𝑁𝑇	 ∈ 	 {0, 1}                                               (13) 

where 1 indicates that NUTS-2-region pairs comprise the largest component of their co-innovation 
networks, whilst 0 refers to the opposite. The entire dataset analysed in this study is shared in the 
Figshare repository8. 

3.4 Methods 
3.4.1 Pearson correlation 
    The researcher conducts Pearson Correlation Analysis of variables before choosing one of the 
regression methods with the best goodness of fit. Figure 3 illustrates correlations of coefficients 
between variables based on Pearson Correlation. There are significantly positive correlations 
between intra-regional and AI TD (𝐷𝐸𝑉𝐸𝐿𝑂𝑃𝑀𝐸𝑁𝑇) as well as AI TA (𝐴𝑃𝑃𝐿𝐼𝐶𝐴𝑇𝐼𝑂𝑁) co-
innovation, but interregional effects are insignificant. Spatial distance of each NUTS-2-region pair 
has insignificantly negative correlation both with AI TA and AI TD. Correlation coefficients 
between variables are also shown in the heatmap of Figure 11 in the Appendix A. 
    The dependent variable: 𝐷𝐸𝑉𝐸𝐿𝑂𝑃𝑀𝐸𝑁𝑇 complies with a Bernoulli Distribution. Thus, a logit 
regression method is appropriate for regression analysis of the binary variable: 𝐷𝐸𝑉𝐸𝐿𝑂𝑃𝑀𝐸𝑁𝑇. 
Another variable: 𝐴𝑃𝑃𝐿𝐼𝐶𝐴𝑇𝐼𝑂𝑁 has a Negative Binomial Distribution, and the variance of this 
variable is larger than its mean. Therefore, a Zero-inflated Negative Binomial (ZINB) Regression 
method should be a suitable method for this variable (Greene 1994). However, we need to conduct 
further model tests in the next part to determine one of the most appropriate regression models. 

 
8 The Figshare repository: https://doi.org/10.6084/m9.figshare.20237541.v1. Generated on 6th July 2022 
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Fig. 3 A Cross Table of Correlations between variables 
Source: Own elaborations  

3.4.2 Regression models 
    The binary variable: 𝐷𝐸𝑉𝐸𝐿𝑂𝑃𝑀𝐸𝑁𝑇 is analysed by the logit model based on the maximum 
likelihood (see a baseline model in the equation (14)). The reason why the logit model is more 
appropriate is its interpretability of odds/probability and more accurate estimations than the 
Ordinary Least Square (OLS) method, except for the reason of limited observations (Von Hippel 
2017).  
    There are several assumptions of the logit model as follows. There is linearity between the odds 
of 𝐷𝐸𝑉𝐸𝐿𝑂𝑃𝑀𝐸𝑁𝑇 and independent variables (e.g. 𝐼𝑛𝑡𝑒𝑟𝑅𝑒𝑔𝑝𝑐 and 𝐼𝑛𝑡𝑟𝑎𝑅𝑒𝑔𝑝𝑐). Residuals of 
the logit regression are assumed to be logistically distributed and absent from multicollinearity, 
from influential observations, and from correlation between error terms and independent variables. 
In addition, the VIF test is conducted to examine the existence of the multicollinearity issue.    

𝑙𝑛(
𝑃(𝐷𝐸𝑉𝐸𝐿𝑂𝑃𝑀𝐸𝑁𝑇	 = 	1)

1− 𝑃(𝐷𝐸𝑉𝐸𝐿𝑂𝑃𝑀𝐸𝑁𝑇	 = 	1)!,#
) = 𝛽0 + 𝛽1𝐼𝑛𝑡𝑟𝑎𝑅𝑒𝑔𝑝𝑐!,#$1 + 𝛽2𝐼𝑛𝑡𝑒𝑟𝑅𝑒𝑔𝑝𝑐!,#$1 + 

                                                                       𝛽3𝐷𝐼𝑆𝑇𝐴𝑁𝐶𝐸𝑆 + 𝛽4𝑍!,#$1 + 𝜀!,#$1           
                                                                                                                                                (14) 
where independent variables are 𝐼𝑛𝑡𝑟𝑎𝑅𝑒𝑔𝑝𝑐!,#$1, 𝐼𝑛𝑡𝑒𝑟𝑅𝑒𝑔𝑝𝑐!,#$1 and 𝐷𝐼𝑆𝑇𝐴𝑁𝐶𝐸𝑆; 𝑍!,#$1 
denotes 8 control variables including 𝐺𝐷𝑃𝑝𝑐!,#$1, 𝐺𝐷𝑃𝑝𝑐_𝑑𝑖𝑓!,#$1, 𝑅𝑛𝐷𝑝𝑐!,#$1, 𝑃𝑂𝑃!,#$1, 
𝑃𝑂𝑃_𝑑𝑖𝑓!,#$1, 𝑃𝑂𝑃_1_𝑠𝑞!,#$1, 𝑃𝑂𝑃_2_𝑠𝑞!,#$1 and 𝐶𝑂𝑀𝑃𝑂𝑁𝐸𝑁𝑇; 𝜀!,#$1 refers to a residual of a 
regression model; 𝛽0 is a constant, 𝛽1, 𝛽2, 𝛽3 and 𝛽4 are coefficients. 
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As for the count variable: 𝐴𝑃𝑃𝐿𝐼𝐶𝐴𝑇𝐼𝑂𝑁 , the researcher uses a likelihood ratio test for 
overdispersion (namely, odTest) 9  in the count data and Vuong’s non-nested hypothesis test 
(namely, vuong)10 to choose one of the best regression methods. Results of this odTest determine 
whether we should choose a Poisson regression model or a Negative Binomial regression model. 
Results of the vuong test indicate that we should choose a Zero-inflated Poisson/Negative 
Binomial model or its ordinary counterpart. 

Based on the testing results, we adopt the Zero-inflated Negative Binomial Regression (ZINB) 
model to regress the variable (𝐴𝑃𝑃𝐿𝐼𝐶𝐴𝑇𝐼𝑂𝑁) with extra zero-valued observations. This research 
follows the ZINB method of Bokányi et al. (2021). It is inappropriate to adopt an OLS model due 
to the negative binomial distribution of the count data (see Figure 3). This ZINB model consists 
of two models including  a similar logit model for the zero part (thereafter, the Logit model) (see 
a baseline model in the equation (15a)) and a negative binomial regression model to regress the 
count part (see a baseline model in the equation (15b)) (Greene 1994). More particularly, this 
ZINB model separately examines effects on the establishment of AI TA collaborative relations of 
NUTS-2-region pairs without AI co-patents and on the intensity of AI TA co-innovations of region 
pairs with AI co-patents.  
    Estimated coefficients for the zero part should be multiplied with negative 1 (i.e. (-1)) for 
interpretations which are the opposite of that in a normal logit model. The reason is that this Logit 
model for the zero data examines the absence of AI TA collaborations. Additionally, the 
interpretation of the negative binomial model for the count data is similar to that of an OLS model. 
However, some control variables, for example, 𝑃𝑂𝑃_1_𝑠𝑞 and 𝑃𝑂𝑃_2_𝑠𝑞, are excluded from the 
baseline model in the equation (15b) because of divergence of regression results. 
    There are some assumptions of this ZINB model. For instance, there is correlation between 
observations such as overdispersion, no multicollinearity issue among variables and no influential 
outliers. These assumptions should be tested after regression analysis by the VIF test. 

𝑙𝑛(
𝑃(𝐴𝑃𝑃𝐿𝐼𝐶𝐴𝑇𝐼𝑂𝑁	 = 	0)

1− 𝑃(𝐴𝑃𝑃𝐿𝐼𝐶𝐴𝑇𝐼𝑂𝑁	 = 	0)!,#
) = 𝛽0 + 𝛽1𝐼𝑛𝑡𝑟𝑎𝑅𝑒𝑔𝑝𝑐!,#$1 + 𝛽2𝐼𝑛𝑡𝑒𝑟𝑅𝑒𝑔𝑝𝑐!,#$1 + 

                              𝛽3𝐷𝐼𝑆𝑇𝐴𝑁𝐶𝐸𝑆 + 𝛽4𝐼𝑛𝑡𝑒𝑟𝑅𝑒𝑔𝑝𝑐_𝑋_𝐷𝐼𝑆𝑇𝐴𝑁𝐶𝐸𝑆	 + 𝛽5𝐶!,#$1 + 𝜀!,#$1                                                                                   

                                                                                                                                   (15a) 

𝑙𝑛(𝐴𝑃𝑃𝐿𝐼𝐶𝐴𝑇𝐼𝑂𝑁!,#) = 𝛽0 + 𝛽1𝐼𝑛𝑡𝑟𝑎𝑅𝑒𝑔𝑝𝑐!,#$1 + 𝛽2𝐼𝑛𝑡𝑒𝑟𝑅𝑒𝑔𝑝𝑐!,#$1 + 
                              𝛽3𝐷𝐼𝑆𝑇𝐴𝑁𝐶𝐸𝑆 + 𝛽4𝐼𝑛𝑡𝑒𝑟𝑅𝑒𝑔𝑝𝑐_𝑋_𝐷𝐼𝑆𝑇𝐴𝑁𝐶𝐸𝑆	 + 𝛽5𝐶!,#$1 + 𝜀!,#$1 

                                                                                                                                    (15b) 

where 𝑃(𝐴𝑃𝑃𝐿𝐼𝐶𝐴𝑇𝐼𝑂𝑁 = 0)  in the equation (15a) is for the extra zero part and 
𝑙𝑛(𝐴𝑃𝑃𝐿𝐼𝐶𝐴𝑇𝐼𝑂𝑁)  in the equation (15b) is for the count part; 𝐼𝑛𝑡𝑒𝑟𝑅𝑒𝑔𝑝𝑐_𝑋_𝐷𝐼𝑆𝑇𝐴𝑁𝐶𝐸𝑆 
refers to the interaction effect of interregional collaboration and spatial distance of each region 

 
9 odTest: https://www.rdocumentation.org/packages/pscl/versions/1.5.5/topics/odTest. Accessed 15 May 2022 
10 vuong: https://www.rdocumentation.org/packages/pscl/versions/1.5.5/topics/vuong. Accessed 15 May 2022 
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pair on AI application collaborations; 𝐶!,#$1 denotes 6 control variables including 𝐺𝐷𝑃𝑝𝑐!,#$1, 
𝐺𝐷𝑃𝑝𝑐_𝑑𝑖𝑓!,#$1, 𝑅𝑛𝐷𝑝𝑐!,#$1, 𝑃𝑂𝑃!,#$1, 𝑃𝑂𝑃_𝑑𝑖𝑓!,#$1 and 𝐶𝑂𝑀𝑃𝑂𝑁𝐸𝑁𝑇.  

4. Prediction of the nature of diffused knowledge 

4.1 Patent analysis 
4.1.1 Patents of artificial intelligence 
    Among the filtered AI patents, there are 28,775 inventors from all around the world regarding 
AI technology development (AI TD), and 252,138 inventors for AI technology applications (AI 
TA). For instance, a patent named Indication of Accuracy of Quantitative Analysis with the 
publication number of EP1593092 is categorised as AI TD with all AI-related CPC codes. This 
patent contributes to the evaluation of medical images by developing AI technologies. Another 
patent named Exchanging Data with a Mobile Communication Network with the publication 
number of EP3183894 is classified as AI TA with not only AI-related CPC codes but also other 
CPC codes. This patent improves the remote control of functions of machine type communication 
devices by using AI technologies in intelligent homes. 

4.1.2 AI co-patents in Europe  
There are 16,379 AI co-patents with at least two inventors in Europe, consisting of 11,177 intra-

regional collaborations and 5,202 interregional collaborations between the NUTS 2 regions. 
Germany and Great Britain are two main countries greatly contributing to co-patenting activities 
of AI TD and TA among the 30 countries between 1982-2020 (see Figure 7 and 8 in the Appendix 
A). During this period, collaborative inventors increasingly created co-inventions for AI TA, 
whilst co-patents of AI TD in Europe increased and peaked in 2002 and fluctuated between 2002-
2015 (see Figure 4 below; Figure 9 in the Appendix A). Both AI TD and TA co-patents decreased 
sharply between 2016-2020 because most patent applications are under verification. This fact is 
the reason why this research chooses a current 10-year time window for dependent variables.   
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Fig. 4 The Number of AI Co-patents with At Least Two European inventors in Each Year by 
Knowledge Type, 1982-2020, NUTS 2 Region Level 
Source: Own elaborations on the OECD REGPAT database (version: 2022)  

    These AI co-patents include 328 collaborative inventors in Europe for AI TD and 56,237 co-
inventors for AI TA. There are 216 co-inventors cooperatively developing AI technology within 
NUTS 2 regions, whilst 112 co-inventors create co-innovations for AI TD interregionally. 36,275 
co-inventors adopt AI technologies collaboratively within NUTS 2 regions, whilst 19,962 co-
inventors located in different NUTS 2 regions collaborate to create AI application co-inventions. 

4.1.3 Spatial distribution of AI co-inventors 
Maps (Figure 5 and 6) illustrate where co-inventors with regards to AI TD and AI TA were 

located across NUTS 2 regions between 1982-2020. As for AI TD, co-inventors scatter across 
NUTS 2 regions, whilst as for AI TA, their co-patenting activities concentrate in specific regions, 
for instance, the south of the Netherlands and of Germany. More particularly, NL41 (Noord-
Brabant) has the most frequent AI co-innovations (n = 12,446 in total), whilst FR10 (Île de France) 
ranks the second (n = 2,377). 
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Fig. 5 The Number of Co-inventors for                  Fig. 6 The Number of Co- inventors for 
Technology Development of AI,                            Technology Application of AI, 
NUTS 2 Region Level, 1982-2020                         NUTS 2 Region Level, 1982-2020  
Source: Own elaborations on the OECD REGPAT database (version: 2022) 

4.1.4 NUTS-2-region pairs 
    The researcher creates NUTS-2-region pairs by combinations of every two NUTS 2 regions in 
which AI co-inventors are located as pairs for each AI co-patents and summing each pair. Different 
region pairs have different frequencies of inter- and intra-regional collaborations between AI co-
inventors. Co-inventors in the NUTS-2-region pair: Noord-Brabant—Noord-Brabant involved in 
the most co-patenting activities between 2001-2010 (2,161 intra-regional collaborations among 
which 28 for AI TD and 2,133 for AI TA).              

4.1.5 Collaborative innovation networks 
    Based on these NUTS-2-regions pairs, the researchers create an AI innovation network which 
has a skewed degree distribution. This type of distribution indicates a large number of nodes with 
low node degrees and a few nodes with high degrees (see Figure 10 in the Appendix A). The mean 
distance of the entire network is approximately 2.58, diameter is 5 and the edge density is about 
2.617.  
    Among these nodes, several vertices are hubs with the highest degrees and closeness values in 
terms of AI knowledge diffusion for AI TA and AI TD. More particularly, these knowledge hubs 
are Noord-Brabant, Île-de-France and Oberbayern with the degrees of 43499, 7226 and 6646, 
respectively, and with values of closeness of 0.002, 0.002 and 0.002. Several nodes (e.g. 
Oberbayern) create large components connecting different knowledge communities. For instance, 
NUTS-2-region pairs which are included in the largest components have a value of 1 for the control 
variable: 𝐶𝑂𝑀𝑃𝑂𝑁𝐸𝑁𝑇.                                       

4.2 Regression results 
4.2.1 Technology development 
    The researcher chooses Model 10 as the best regression model of 𝐷𝐸𝑉𝐸𝐿𝑂𝑃𝑀𝐸𝑁𝑇 according 
to the VIF test and maximum likelihood. VIF values of each independent variable in this model 
with the highest maximum likelihood are smaller than 5. In this regression analysis, estimated 
coefficients of the variable: 𝐼𝑛𝑡𝑒𝑟𝑅𝑒𝑔𝑝𝑐!,#$1 are consistent in terms of signs and confidence levels 
among all models (see Table 3). 
    The sign of 𝐼𝑛𝑡𝑒𝑟𝑅𝑒𝑔𝑝𝑐 is positive, and its confidence level is 99%. Its coefficient indicates 
that an 1 percent increase in the frequency of interregional collaborations between NUTS 2 regions 
in the previous period causes an increase in the odds of the formation of AI technology 
development (TD) collaborations with 0.916 percentage points in the current period, maintaining 
all the other variables constant. This result significantly supports Hypothesis 2 that innovative 
knowledge diffuses between regions based on global pipelines (Bathelt et al. 2004), which aligns 
with the Science-Technology-Innovation mode (Alhusen and Bennat 2021). In addition, the 
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coefficient of 𝐷𝐼𝑆𝑇𝐴𝑁𝐶𝐸𝑆 is insignificant. These findings support the conclusion of Van der 
Wouden and Rigby (2019) that cognitive distance rather than spatial distance is more likely to 
influence the establishment of collaborations between specialised inventors and their counterparts 
in other urban areas. 
    Assumption tests of residuals in the logit regression model are shown in Figure 12 in the 
Appendix A. These tests illustrate that residuals of Model 10 are independent, have a logistic 
distribution and are not related to independent variables. Thus, regression results are reliable. 

Table 3 Regression Results of DEVELOPMENT 
 

 Dependent variable: DEVELOPMENT (2011-2020) 

 
 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 
 

IntraRegpc 0.55*** 0.66*** 0.68*** 0.68*** 0.72*** 0.66*** 0.46* 0.44* 0.40 0.41 

 (0.10) (0.12) (0.13) (0.13) (0.13) (0.14) (0.26) (0.26) (0.26) (0.27) 

InterRegpc  0.50** 0.52** 0.52** 0.60*** 0.55** 0.60** 0.60** 0.65*** 0.65*** 

  (0.22) (0.23) (0.23) (0.23) (0.23) (0.24) (0.24) (0.25) (0.25) 

DISTANCES   0.30 0.30 0.34 0.26 0.43 0.50 0.64 0.63 

   (0.69) (0.70) (0.70) (0.71) (0.74) (0.75) (0.76) (0.76) 

POP    -0.01 0.01 0.04 0.11 0.09 11.52 9.78 

    (0.23) (0.23) (0.24) (0.24) (0.25) (10.48) (10.62) 

GDPpc     -0.77** -1.08** -0.93* -0.90* -0.80 -0.87 

     (0.39) (0.49) (0.51) (0.52) (0.52) (0.53) 

RnDpc      0.49 0.51* 0.52* 0.52* 0.53* 

      (0.31) (0.31) (0.31) (0.31) (0.31) 

POP_dif       -0.08 0.001 -0.03 -0.03 

       (0.10) (0.16) (0.16) (0.16) 

GDPpc_dif        -0.15 -0.15 -0.15 

        (0.22) (0.22) (0.22) 

POP_1_sq         -0.43 -0.36 
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         (0.38) (0.38) 

POP_2_sq         -0.38 -0.32 

         (0.37) (0.37) 

COMPONEN
T 

         0.42 

          (0.74) 

Constant -4.67*** -5.19*** -5.29*** -5.08 10.20 13.47 9.41 9.23 -153.85 -128.26 

 (0.30) (0.43) (0.50) (6.34) (10.12) (11.25) (12.06) (12.31) (149.47
) 

(151.92
) 

 

Observationsa 1,221 1,221 1,221 1,221 1,221 1,221 1,221 1,221 1,221 1,221 

Log 
Likelihood 

-86.24 -84.01 -83.92 -83.92 -82.21 -80.36 -80.01 -79.79 -78.39 -78.22 

Akaike Inf. 
Crit. 

176.48 174.03 175.85 177.85 176.41 174.72 176.03 177.58 178.78 180.45 

 

 *p<0.1; **p<0.05; ***p<0.01 

Notes: aThe number of observations refers to the number of NUTS-2-region pairs; 
t statistics in parentheses 
Source: Own elaborations 

4.2.2 Technology application 
    Results of the odTest shows that there exists overdispersion in the count variable 
(𝐴𝑃𝑃𝐿𝐼𝐶𝐴𝑇𝐼𝑂𝑁) (Chi-Square Test Statistic = 43010.4257, p-value = < 2.2e-16). Thus, the ZINB 
model outperforms the Zero-inflated Poisson model. In addition, the ZINB model has more 
significant explanatory power than the negative binomial model according to the result of the 
vuong test (p = 0.005 for the AIC-corrected value). Model 10 with the highest maximum likelihood 
(i.e. the best goodness of fit) is the best regression specialisation of the ZINB model.  
    As for the zero part, results of Model 10 indicate that the sign of 𝐼𝑛𝑡𝑒𝑟𝑅𝑒𝑔𝑝𝑐 is positive at the 
99 percent confidence level, but its coefficient should be interpreted in an opposite way different 
from a normal logit model (i.e. Multiplying coefficients with negative 1) (see Table 4). This 
coefficient means that the odds of the establishment of AI TA collaborations decrease with 0.804 
percentage points in the current period significantly, maintaining all other variables constant, if the 
frequency of interregional collaborations between NUTS 2 regions increases with 1 percent in the 
previous period. More particularly, the coefficient of 𝐼𝑛𝑡𝑒𝑟𝑅𝑒𝑔𝑝𝑐_𝑋_𝐷𝐼𝑆𝑇𝐴𝑁𝐶𝐸𝑆 is significantly 
positive, which means that inter-regional collaborations with lower spatial distances are more 
likely to form the AI TA relations between NUTS 2 regions without AI co-patents. These results 
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support Hypothesis 4, which is consistent with diffusion theories of Hagerstrand (1968) that 
distance decay exists as spatial distances between inventors and adopters increase. 
    As for the count data, results of the model (9) show that signs of 𝐼𝑛𝑡𝑟𝑎𝑅𝑒𝑔𝑝𝑐 and 𝐼𝑛𝑡𝑒𝑟𝑅𝑒𝑔𝑝𝑐 
are both positive, and their confidence levels are 99% (see Table 5). The coefficient of 
𝐼𝑛𝑡𝑟𝑎𝑅𝑒𝑔𝑝𝑐 means that an 1 percent increase in the frequency of intra-regional collaborations 
increases the intensity of AI TA co-inventions with 0.47 percentage points in the next period, 
whilst keeping all other variables constant. This result supports Hypothesis 3 significantly and 
contributes to diffusion theories of Rogers (1962). The coefficient of 𝐼𝑛𝑡𝑒𝑟𝑅𝑒𝑔𝑝𝑐 indicates that 
the intensity of AI technology application (TA) collaborations increases with 0.52 percentage 
points if the frequency of interregional collaborations in each NUTS-2-region pair increases with 
1 percentage point, maintaining other variables unchanged.  
    In addition, the coefficient of 𝐼𝑛𝑡𝑒𝑟𝑅𝑒𝑔𝑝𝑐_𝑋_𝐷𝐼𝑆𝑇𝐴𝑁𝐶𝐸𝑆 is significantly negative at the 99 
percent confidence level as for the NUTS-2-region pairs with AI co-patents. This result means that 
interregional collaborations between spatially closer NUTS 2 regions in which AI co-inventors are 
located encourage more AI TA co-innovations and vice versa, which supports Hypothesis 4 
significantly. This finding contributes to theories of Hagerstrand (1968) and justifies local 
knowledge diffusion patterns of Balland et al. (2020) and Haller and Rigby (2020). However, it 
contradicts empirical evidence of Lengyel et al. (2020) that new technologies are adopted between 
large towns in early stages of the entire life cycle of technologies. Table 6 below shows results of 
two regression models with the highest maximum likelihood. 

Table 4 Results of ZINB Regression of AI APPLICATION for the Zero Part 
 

 Dependent variable: APPLICATION (2011-2020) 

 
 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 

 

IntraRegpc -2.28 -2.68 -2.69 -2.61 -2.83 -2.72 -2.79 -1.78 -1.82 -1.26 

 (475.52) (6.23) (13.18) (6.21) (5.26) (4.45) (4.72) (2.54) (2.45) (1.73) 

InterRegpc  0.62*** 0.90*** 0.51*** 0.56*** 0.57*** 0.56*** 0.55*** 0.56*** 0.59*** 

  (0.10) (0.22) (0.12) (0.12) (0.11) (0.11) (0.11) (0.11) (0.11) 

DISTANCES   2.10** -0.11 -0.01 -0.11 -0.15 -0.19 -0.16 -0.37 

   (1.05) (0.55) (0.54) (0.51) (0.51) (0.46) (0.48) (0.50) 

POP     -0.56*** -0.48*** -0.48*** -0.48*** -0.49*** -0.73*** 

     (0.19) (0.18) (0.18) (0.18) (0.18) (0.21) 
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GDPpc      -0.28 -0.29 -0.26 -0.22 -0.32 

      (0.28) (0.28) (0.29) (0.31) (0.34) 

RnDpc       0.04 0.06 0.06 0.07 

       (0.11) (0.10) (0.11) (0.11) 

POP_dif        0.07 0.08 0.06 

        (0.09) (0.10) (0.11) 

GDPpc_dif         -0.04 0.02 

         (0.12) (0.13) 

COMPONEN
T 

         15.28 

          (318.48
) 

InterRegpc: 
DISTANCES 

   0.85*** 0.97*** 0.95*** 0.93*** 0.97*** 0.97*** 1.19*** 

    (0.30) (0.29) (0.29) (0.29) (0.28) (0.28) (0.30) 

Constant -12.71 -3.09*** -4.49*** -3.15*** 12.32** 16.30** 16.14** 14.90** 14.40* 7.51 

 (45.19) (0.29) (1.20) (0.35) (5.25) (7.15) (7.20) (7.21) (7.43) (318.58
) 

 

Observationsa 1,221 1,221 1,221 1,221 1,221 1,221 1,221 1,221 1,221 1,221 

Log 
Likelihood 

-4,298.03 -
4,229.0

7 

-
4,211.2

1 

-
4,185.2

6 

-
4,174.8

8 

-
4,159.7

5 

-
4,156.9

7 

-
4,090.6

2 

-
4,090.2

1 

-
4,084.2

6 
 

 *p<0.1; **p<0.05; ***p<0.01 

Notes: aThe number of observations refers to the number of NUTS-2-region pairs; 
t statistics in parentheses 
Source: Own elaborations 
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Table 5 Results of ZINB Regression of AI APPLICATION for the Count Part 
 

 Dependent variable: APPLICATION (2011-2020)  

 
 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 
 

IntraRegpc 0.78*** 0.86*** 0.84*** 0.84*** 0.84*** 0.87*** 0.86*** 0.48*** 0.48*** 0.47*** 

 (0.04) (0.04) (0.04) (0.03) (0.03) (0.03) (0.03) (0.05) (0.05) (0.05) 

InterRegpc  0.40*** 0.36*** 0.42*** 0.41*** 0.45*** 0.45*** 0.53*** 0.53*** 0.52*** 

  (0.04) (0.04) (0.04) (0.04) (0.04) (0.04) (0.04) (0.04) (0.04) 

DISTANCES   -0.37*** -0.23** -0.25** -0.26** -0.27*** 0.03 0.02 0.02 

   (0.11) (0.11) (0.11) (0.11) (0.10) (0.10) (0.10) (0.10) 

POP     0.13*** 0.16*** 0.16*** 0.32*** 0.32*** 0.31*** 

     (0.04) (0.04) (0.04) (0.04) (0.04) (0.04) 

GDPpc      -0.34*** -0.32*** -0.02 -0.03 -0.01 

      (0.06) (0.06) (0.07) (0.07) (0.07) 

RnDpc       0.06** 0.11*** 0.11*** 0.11*** 

       (0.02) (0.02) (0.02) (0.02) 

POP_dif        -0.15*** -0.16*** -0.17*** 

        (0.01) (0.02) (0.02) 

GDPpc_dif         0.02 0.03 

         (0.03) (0.03) 

COMPONENT          -0.13 

          (0.13) 

InterRegpc 
:DISTANCES 

   -0.82*** -0.81*** -0.79*** -0.81*** -0.94*** -0.93*** -0.93*** 

    (0.12) (0.12) (0.12) (0.12) (0.11) (0.11) (0.11) 

Constant 2.44*** 2.11*** 2.21*** 2.19*** -1.36 4.80*** 4.20*** -5.16*** -4.90*** -5.11*** 

 (0.05) (0.05) (0.06) (0.06) (1.17) (1.56) (1.58) (1.76) (1.80) (1.84) 
 

Observationsa 1,221 1,221 1,221 1,221 1,221 1,221 1,221 1,221 1,221 1,221 
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Log Likelihood -
4,298.0

3 

-
4,229.0

7 

-
4,211.2

1 

-4,185.26 -
4,174.8

8 

-
4,159.7

5 

-
4,156.9

7 

-
4,090.6

2 

-
4,090.2

1 

-
4,084.2

6 
 

 *p<0.1; **p<0.05; ***p<0.01 

Notes: aThe number of observations refers to the number of NUTS-2-region pairs; 
t statistics in parentheses 
Source: Own elaborations 

Table 6 Regression Results of DEVELOPMENT and APPLICATION in the Best Models 

 

 Dependent variable: 

 
 

 DEVELOPMENT APPLICATION 

 logistic zero-inflated 

  count data 

 (1) (2) (3) 
 

IntraRegpc 0.41 -1.26 0.47*** 

 (0.27) (1.73) (0.05) 

InterRegpc 0.65*** 0.59*** 0.52*** 

 (0.25) (0.11) (0.04) 

DISTANCES 0.63 -0.37 0.02 

 (0.76) (0.50) (0.10) 

POP 9.78 -0.73*** 0.31*** 

 (10.62) (0.21) (0.04) 

GDPpc -0.87 -0.32 -0.01 

 (0.53) (0.34) (0.07) 

RnDpc 0.53* 0.07 0.11*** 

 (0.31) (0.11) (0.02) 

POP_dif -0.03 0.06 -0.17*** 

 (0.16) (0.11) (0.02) 
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GDPpc_dif -0.15 0.02 0.03 

 (0.22) (0.13) (0.03) 

POP_1_sq -0.36   

 (0.38)   

POP_2_sq -0.32   

 (0.37)   

COMPONENT 0.42 15.28 -0.13 

 (0.74) (318.48) (0.13) 

InterRegpc:DISTANCES  1.19*** -0.93*** 

  (0.30) (0.11) 

Constant -128.26 7.51 -5.11*** 

 (151.92) (318.58) (1.84) 
 

Observations 1,221 1,221 1,221 

Log Likelihood -78.22 -4,084.26 -4,084.26 

Akaike Inf. Crit. 180.45   
 

 *p<0.1; **p<0.05; ***p<0.01 

Notes: t statistics in parentheses; Column (2) is a similar logit regression model of the ZINB model 
for the zero part; Column (3) is the negative binomial model of the ZINB model for the count part. 
Source: Own elaborations 

4.3 Robustness tests 
    This research conducts robustness tests for two regression analyses by using two different 
methods, respectively. As for the variable: 𝐷𝐸𝑉𝐸𝐿𝑂𝑃𝑀𝐸𝑁𝑇 , the researcher performs Firth’s 
Bias-Reduced Logistic Regression to make new estimations (Heinze and Ploner 2003; Simensen 
and Abbasiharofteh 2022). As for the other, the researcher regresses the dependent variable: 
𝐴𝑃𝑃𝐿𝐼𝐶𝐴𝑇𝐼𝑂𝑁  in a 5-year time window between 2011-2015. These tests aim to investigate 
whether coefficients in two robustness models maintain similar confidence levels and the same 
signs as that in two original models (i.e. the logit and ZINB regression).  
    Results of Table 7 in the Appendix A indicates that coefficients of independent variables remain  
consistent with that in the original regression model (10) of 𝐷𝐸𝑉𝐸𝐿𝑂𝑃𝑀𝐸𝑁𝑇 . In addition, 
regression results of 𝐴𝑃𝑃𝐿𝐼𝐶𝐴𝑇𝐼𝑂𝑁 are robust. Table 8 and 9 in the Appendix A indicate that 
signs and confidence levels of independent variables (𝐼𝑛𝑡𝑒𝑟𝑅𝑒𝑔𝑝𝑐, 𝐼𝑛𝑡𝑟𝑎𝑅𝑒𝑔𝑝𝑐, 𝐷𝐼𝑆𝑇𝐴𝑁𝐶𝐸𝑆, 
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𝐼𝑛𝑡𝑒𝑟𝑅𝑒𝑔𝑝𝑐_𝑋_𝐷𝐼𝑆𝑇𝐴𝑁𝐶𝐸𝑆) are consistent with that in the original regression model (i.e. the 
ZINB model). 

5 Discussion and Conclusions 

    Interregional collaborations of co-inventors between NUTS 2 regions encourage co-innovation 
of AI technology development (TD). This type of collaboration facilitates co-inventors to transfer 
various technological knowledge across regions (Hagerstrand 1968; Johansson and Karlsson 2019). 
This finding contributes to the concept of Science-Technology-Innovation (STI) mode based on 
global pipelines (Bathelt et al. 2004; Alhusen et al. 2021). More particularly, there is no significant 
effect of the spatial distance of NUTS-2-region pairs on the probability of establishing AI TD 
collaboration ties. This finding supports conclusions of Kilkenny (2015) and Van der Wouden and 
Rigby (2019) that geographical distance is less likely to encourage the establishment of innovative 
collaborations than social and cognitive proximity between specialised inventors across space. 
    Both intra- and inter-regional collaborations of co-inventors across NUTS 2 regions which have 
AI co-patents increase the intensity of co-innovation for AI technology application (TA)  
significantly. For one thing, face-to-face communication encourages co-inventors within regions 
to impart tacit knowledge and establish mutual trust based on the Doing-Using-Interacting mode 
(Lundvall 2016; Alhusen et al. 2021). For another, these co-inventors diffuse various knowledge 
between regions to create application co-inventions for regional diversification (Santoalha 2019). 
However, interregional collaborations between distant NUTS 2 regions decrease the probability 
and intensity of AI TA co-innovation because complex applied knowledge loses greatly over 
distance (Hagerstrand 1968). Put it differently, knowledge of AI TA concentrates within NUTS 2 
regions or diffuses between regions and their neighbouring regions. Results contributing to 
diffusion theories of Rogers (1962) and Hagerstrand (1968) contradict, to some extent, empirical 
evidence of Bokányi et al. (2021) that a new technology is adopted between distant large towns. 
Differently, they justify local knowledge diffusion patterns mentioned by Balland et al. (2020) and 
Haller and Rigby (2020).  
    Innovation policies, on the one hand, should create incentives for AI inventors in different 
NUTS 2 regions to conduct research and development collaboratively (Crescenzi et al. 2016). 
Collaborations among AI professionals and diversified researchers make AI technological 
breakthroughs by sharing and combining innovative knowledge between various technological 
communities (Abbasiharofteh et al. 2020). This combination of knowledge is different in fostering 
co-innovation if this knowledge is produced and diffused across NUTS 2 regions with various 
territorial characteristics (e.g. Universities, institutions, GDP per capita and R&D employment) 
(Rodríguez‐Pose and Wilkie 2019). Based on various socio-economic contexts of regions, AI 
Inventors specialise in specific fields of AI technologies in different regions (Balland et al. 2019), 
and it requires their collaborations to encourage the combination of professional knowledge for 
technology development.  
    On the other hand, regional policies could trigger local innovativeness from different industries 
to collaborate and absorb various knowledge. It requires greater relatedness between existing 
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knowledge of local inventors and new co-innovations to diversify knowledge bases of NUTS 2 
regions (Balland et al. 2019). For instance, regional knowledge bases of ICTs strongly support the 
diversification of AI technologies in those catching-up regions in Europe (Xiao and Boschma 
2021). Similarly, collaborations among local inventors within NUTS 2 regions encourage 
widespread adoptions of AI technologies in different industries and foster AI TA co-innovation. 
    There is a limitation in this research. The researcher filters out AI patents according to a limited 
number of available CPC codes of AI technologies from WIPO PATENTSCOPE Artificial 
Intelligence Index. Some AI patents are omitted, which leads to a limited number of valid 
observations. We could have analysed texts of each patent document for a more comprehensive 
and precise classification of co-patents between AI TD and AI TA. 

This research omits the effects of technological relatedness of each NUTS-2-region pair on 
knowledge diffusion of AI technology development and application. In the next research, 
researchers can construct indices such as regional knowledge bases, technologies relatedness and 
economic complexity based on relevant data, for instance, scientific papers, granted patents, 
trademarks and employment data. This proposed research contributes to the extant literature of the 
Geography of Innovation.   
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Appendix A 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7 The Number of inventors of AI Co-patents with At Least Two European inventors by 
Knowledge Type and Country, 1982-2020, NUTS 2 Region Level 
Source: Own elaborations 

 
 
 
 

 
 
 
 
 
 
 
 
 

Fig. 8 The Number of inventors of AI Co-patents with At Least Two European inventors by Year 
and Country, 1982-2020, NUTS 2 Region Level 
Source: Own elaborations 
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Fig. 9 The Number of inventors of AI Co-patents with At Least Two European inventors in Each 
Year by Knowledge Type, 1982-2020, NUTS 2 Region Level 
Source: Own elaborations 

Fig. 10 Histogram of Node Degree in the Collaborative Network between NUTS 2 Regions 
Source: Own elaborations 
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Fig. 11 Heatmap of Correlation Coefficients between Variables 
Source: Own elaborations 

Fig. 12 Assumption Tests of Logit Regression of DEVELOPMENT 
Source: Own elaborations 
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Table 7 Firth’s Bias-Reduced Logistic Regression of DEVELOPMENT as Robustness Testing 
  

 Dependent variable: 
DEVELOPMENT (2011-

2020) 

  
 

 Coefficient  P value 
         

IntraRegpc 0.37 0.132 

 (0.23)  

InterRegpc 0.64*** 0.010 

 (0.21)  

DISTANCES 0.71 0.330 

 (0.64)  

POP 4.84 0.580 

 (7.79)  

GDPpc -0.82 0.127 

 (0.44)  

RnDpc 0.43* 0.091 

 (0.25)  

POP_dif -0.03 0.828 

 (0.13)  

GDPpc_dif -0.15 0.475 

 (0.18)  

POP_1_sq -0.19 0.552 

 (0.28)  

POP_2_sq -0.15 0.626 

 (0.27)  

COMPONENT 0.34 0.611 
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 (0.62)  

Constant -58.85  0.645 

 (111.84)  
  

Note: t statistics in parentheses                                
*p<0.1; **p<0.05; ***p<0.01  

 

Source: Own elaborations 

Table 8 Results of Robustness Tests regarding Regression of APPLICATION for the Zero Part 
 

 Dependent variable: APPLICATION (2011-2015) 

 
 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 
 

IntraRegpc -2.55 -1.52 -1.34 -1.32 -1.43 -1.45 -1.49 -0.58 -0.59 -0.56 

 (3.01) (1.43) (1.28) (1.01) (1.17) (1.32) (1.41) (0.46) (0.46) (0.45) 

InterRegpc  0.43*** 0.48*** 0.30*** 0.32*** 0.33*** 0.34*** 0.33*** 0.33*** 0.34*** 

  (0.08) (0.08) (0.08) (0.09) (0.09) (0.09) (0.09) (0.09) (0.09) 

DISTANCES   0.71*** -0.61* -0.58 -0.54 -0.54 -0.59 -0.59 -0.61* 

   (0.24) (0.36) (0.37) (0.36) (0.36) (0.36) (0.36) (0.37) 

POP     -0.18 -0.16 -0.16 -0.25* -0.25* -0.26** 

     (0.11) (0.12) (0.12) (0.13) (0.13) (0.13) 

GDPpc      -0.21 -0.23 -0.29 -0.29 -0.31 

      (0.19) (0.19) (0.21) (0.22) (0.23) 

RnDpc       -0.05 -0.06 -0.06 -0.06 

       (0.07) (0.07) (0.07) (0.07) 

POP_dif        0.11* 0.10 0.10 

        (0.06) (0.07) (0.07) 

GDPpc_dif         0.01 -0.001 

         (0.08) (0.08) 

COMPONENT          0.50 

          (0.48) 
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InterRegpc: 
DISTANCES 

   1.39*** 1.38*** 1.39*** 1.38*** 1.42*** 1.43*** 1.42*** 

    (0.31) (0.31) (0.31) (0.31) (0.31) (0.31) (0.31) 

Constant -0.99*** -1.12*** -1.38*** -1.07*** 4.05 7.84 8.35* 10.77** 10.76** 11.10** 

 (0.18) (0.15) (0.19) (0.18) (3.18) (4.80) (4.80) (5.22) (5.32) (5.40) 
 

Observations 859 859 859 859 859 859 859 859 859 859 

Log Likelihood -
2,359.4

4 

-
2,317.2

1 

-
2,309.4

8 

-2,288.56 -
2,285.0

6 

-
2,282.0

1 

-
2,279.8

9 

-2,261.47 -
2,261.3

1 

-2,259.82 

 

Note: *p<0.1; **p<0.05; ***p<0.01 

Source: Own elaborations 

Table 9 Results of Robustness Tests regarding Regression of APPLICATION for the Count Data 

 

 Dependent variable: APPLICATION (2011-2015) 

 
 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 
 

IntraRegpc 0.63*** 0.69*** 0.67*** 0.68*** 0.67*** 0.68*** 0.67*** 0.47*** 0.47*** 0.46*** 

 (0.04) (0.03) (0.03) (0.03) (0.03) (0.03) (0.03) (0.05) (0.05) (0.05) 

InterRegpc  0.32*** 0.30*** 0.33*** 0.32*** 0.33*** 0.33*** 0.39*** 0.39*** 0.39*** 

  (0.04) (0.04) (0.04) (0.04) (0.04) (0.04) (0.04) (0.04) (0.04) 

DISTANCES   -0.28* -0.11 -0.15 -0.09 -0.10 0.11 0.11 0.11 

   (0.16) (0.16) (0.16) (0.16) (0.16) (0.16) (0.16) (0.16) 

POP     0.10* 0.12** 0.11** 0.22*** 0.23*** 0.23*** 

     (0.05) (0.05) (0.05) (0.06) (0.06) (0.06) 

GDPpc      -0.24** -0.21** 0.01 -0.01 0.02 

      (0.10) (0.10) (0.11) (0.11) (0.11) 

RnDpc       0.06* 0.09*** 0.09*** 0.09*** 

       (0.03) (0.03) (0.03) (0.03) 
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POP_dif        -0.09*** -0.11*** -0.11*** 

        (0.02) (0.04) (0.04) 

GDPpc_dif         0.03 0.03 

         (0.05) (0.05) 

COMPONENT          -0.18 

          (0.17) 

InterRegpc: 
DISTANCES 

   -0.54*** -0.54*** -0.53*** -0.56*** -0.65*** -0.64*** -0.65*** 

    (0.16) (0.16) (0.16) (0.16) (0.16) (0.16) (0.16) 

Constant 1.98*** 1.70*** 1.77*** 1.75*** -0.99 3.46 2.82 -4.15 -3.93 -4.47 

 (0.07) (0.07) (0.08) (0.08) (1.51) (2.38) (2.37) (2.65) (2.68) (2.72) 
 

Observations 859 859 859 859 859 859 859 859 859 859 

Log Likelihood -
2,359.4

4 

-2,317.21 -2,309.48 -
2,288.5

6 

-2,285.06 -
2,282.0

1 

-
2,279.8

9 

-
2,261.4

7 

-
2,261.3

1 

-
2,259.8

2 
 

Note: *p<0.1; **p<0.05; ***p<0.01 

Source: Own elaborations 

 
 
 
 
 
 
 
 
 
 
 


