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ABSTRACT 

 

The existing literature on the effect of flood risk on house prices produces inconsistent findings. The 

purpose of this paper is to analyze the various findings in the literature in order to determine the 

overall effect and explain the study-to-study variation. This is accomplished through conducting a 

meta-analysis of 14 relevant papers published between 2013 and 2023. A total of 191 extracted 

estimates demonstrate a price difference that extends from -84% to +41.4%. The analysis shows that 

flood risk discount is greatest shortly after a flood and diminishes over time. Houses in coastal 

floodplains command a premium due to a failure to separate the effect of being in a coastal floodplain 

from the amenities associated with it. Controlling for time elapsed since the most recent flood, study 

characteristics, and contextual factors, the meta-regression results reveal that a property in a 100-year 

inland floodplain is associated with a 4.7% price discount. 
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1. INTRODUCTION 

 

1.1. Motivation 

The effects of climate change are increasingly becoming more visible all around the world. In 2023, 

many countries experienced the warmest and wettest year on record according to the World 

Meteorological Organization (WMO, 2023). Natural disasters are increasing in frequency due 

to extreme weather, and it is estimated that they result in direct asset losses of about $300 billion 

annually (Rentschler & Salhab, 2020). Overall, disaster costs have been rising for several decades as a 

result of increased exposure, vulnerability of people and infrastructure, and climate change (Ebi et al., 

2021). 

 

Flooding is the world's most frequent and costly natural disaster (Koning et al., 2019). To mitigate the 

damage caused, it is essential to manage development in flood-prone areas. The threat of floods is a 

global reality; it is estimated that 2.2 billion people, or 29 percent of the world population live in areas 

that would experience some level of inundation during a 1-in-100-year flood event, and 19 percent of 

the world's population, around 1.47 billion people, are directly exposed to flooding depths of more 

than 0.15 meters, which poses a significant risk to lives, particularly for vulnerable population groups 

(Rentschler & Salhab, 2020).  

 

In an efficient housing market with complete information, flood risk is capitalized into property 

prices. This implies that because of the possibility of flood damage, the value of a property inside a 

floodplain is less than the value of identical property outside the floodplain (Hino & Burke, 2021). 

Properties inside floodplains might experience reduced desirability, higher insurance costs and more 

property damage and maintenance. The price differentials between these properties should reflect the 

expected loss associated with the flood occurring (MacDonald et al., 1990). The Dutch independent 

institution, known as the 'Autoriteit Financiële Markten' (AFM) or Financial Markets Authority in 

English, asserts that climate risks are currently not adequately integrated into housing prices (Clahsen, 

2023). This is because buyers are either unaware of the risks or unable to assess them, imposing a 

significant financial risk for homebuyers. Additionally, Baldauf et al. (2020) find that differences in 

beliefs about climate change are reflected in property prices. Proposing a solution to enhance 

transparency and facilitate more efficient pricing of properties, the AFM suggests implementing a 

‘climate label’ for residential properties (Clahsen, 2023). 

 

The effect of flood risk on property values has been the subject of numerous studies, but the findings 

of these studies have been conflicting regarding the direction and magnitude of this impact (Belanger 

et al., 2018). On the one hand, many papers report a discount for houses in flood plains. On the other 
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hand, several articles claim that being located in a flood plain has no effect on home prices or even 

comes at a premium (Bin & Kruse, 2006; Morgan, 2007). In order to identify the underlying factors 

behind these variations and to determine the true effect of flood risk on property values, this study 

will employ a meta-analysis.   

 

1.2. Academic relevance 

The existing literature on the impact of flood risk on house prices yields contradictory results. An 

inventory of the literature compiled by Daniel et al. (2009) reveals that willingness to pay estimates 

range from -52 to +58% of the average property price located within the 100-year floodplain. The 

100-year floodplain is an area with a 1% annual chance of flooding and is the flood zone contour used 

in most studies to define the risk level. The literature provides several reasons for the variability in 

estimates. One contributing factor is the internal variation of flood risk within the 100-year floodplain. 

The delineation of the 100-year floodplain relies on the risk level at its boundary, resulting in different 

flooding probabilities for individual properties within the floodplain (Bartosova, 2000; Highfield et 

al., 2013; Turnbull, 2013). Next to that, depending on the type of flood risk as well as the stages of the 

housing market, the mix of capitalization in price relative to liquidity can change (Turnbull et al. 

2013). Moreover, controlling for amenities related to living in a flood-prone area is problematic. This 

is particularly true for coastal areas, where residents place a higher value on amenities associated with 

nearness to the coast, which may result in a price premium (Bakkensen & Barrage, 2017). Finally, 

Daniel et al. (2009) and Beltrán et al. (2018) highlight differences in estimates before and after a flood 

event. This divergence is attributed to an increased awareness of risk, typically observed following a 

hazard, as emphasized by Hallstrom and Smith (2005). 

 

Meta-analysis can be used to explain study-to-study variation when numerous independent studies 

have been conducted on a specific topic with differences in findings (Stanley, 2001). In the fields of 

medicine and economics, meta-analysis is a well-known approach (Stanley, 2001; Daniel et al. 2009). 

However, it is not often used in real estate economics when addressing flood risks. The only studies 

on flood risk discount that use meta-analysis are those by Daniel et al. (2009) and Beltrán et al. 

(2018). In their meta-analyses, they discover substantially different coefficients: Daniel et al. (2009) 

find that a location inside a 100-year floodplain is associated with a price difference of -0.6%, 

whereas Beltrán et al. (2018) find that this is -4.6%. One possible explanation for this disparity is that 

Daniel et al. (2009) include coastal and inland studies in the same analysis, whereas Beltrán et al. 

(2018) considers this problematic and excludes coastal estimates.  

 

The prior meta-analyses included studies up to the year 2013. In an effort to expand and update these 

findings, this research seeks to reassess the analysis conducted by Beltrán et al. (2018), incorporating 

all relevant studies published after 2013. 
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1.3. Research problem statement 

The research aim of this study is to analyze the relationship between flood risk and house prices by 

conducting a meta-analysis. Meta-analysis is an approach based on statistical methods designed to 

summarize the variation in findings across multiple studies (Walker et al., 2008). By combining 

studies, it increases the overall sample size and, as a result, enhances the statistical power. Meta-

regression analysis is a type of meta-analysis that is specifically designed to examine empirical 

economic research (Stanley, 2001). In meta-regression analysis, the dependent variable is a summary 

statistic, a regression parameter derived from each study, and the independent variables can be 

characteristics of the method, design, and data used for different studies. Meta-regression analysis can 

assess the degree to which a given choice of method, design, and data affect the findings presented 

(Stanley, 2001). 

 

The central research question is:  

 

“What is the overall effect of flood risk on house prices?” 

 

The research question will be addressed through a meta-regression on the relevant literature, aided by 

the following set of sub-questions: 

1) How does flood risk affect house prices? 

By conducting a literature review, the first question will be addressed. The meta-analyses of Daniel et 

al. (2009) and Beltrán et al. (2018) will serve as the starting point for the literature review, as they 

comprehensively evaluate most of the relevant literature on the impact of flood risk on house prices.  

Further investigation will be conducted into studies that yield contradictory findings to explore the 

factors contributing to these discrepancies. 

 

2) What factors explain variation in the effect size of flood risk on housing prices as reported by 

existing studies? 

First, relevant studies will be selected from a standard database. From these studies, the summary 

statistic will be selected and effect sizes together with their standard errors will be computed. Each 

estimate will involve the addition and coding of independent variables, also known as moderator 

variables. These variables are derived from previous meta-analyses, supplemented by additional 

variables deemed relevant after a comprehensive review of the literature. In the meta-regression, it 

should become apparent whether and how the effect sizes are influenced by the independent variables. 

 

The structure of the remaining sections in this paper is outlined as follows: Section 2 provides an 

overview of hedonic pricing theory, reviews relevant literature on the impact of flood risk on house 

prices, and outlines hypotheses related to the research questions. In Section 3, the methods for data 
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collection and conducting meta-analysis are detailed. Section 4 presents and discusses the results of 

the subsample meta-analysis and meta-regression, including checks for robustness. Finally, Section 5 

concludes.  

 

2. THEORY, LITERATURE & HYPOTHESES 

 

2.1. Hedonic pricing 

The hedonic price model, which is based on the foundational works of Lancaster (1966) and Rosen 

(1974), has been widely used in scientific research on housing markets. According to the hedonic 

pricing theory, the price of a house is determined by the consumer's willingness to pay for specific 

characteristics associated with the house (Chau & Chin, 2003). This implies that the characteristics of 

a property are valued rather than the property itself (Morgan, 2007). These characteristics incorporate 

structural attributes of the property as well as neighborhood and locational features. Structural 

attributes include characteristics such as the age of the house, size, number of rooms, type of house, 

and so forth. Crime rates, median household income, proximity to water, parks, or shopping centers, 

as well as flood risk, are examples of neighborhood and locational characteristics (Bartosova, 2000). 

Equation (1) describes the hedonic price function for properties with regard to flood risk. 

 

𝑃 = 𝑓(𝑋, 𝐹)          (1) 

 

Here, the price of a property, 𝑃, is described as a function of the previously mentioned characteristics, 

and the flood risk variable 𝐹 (Bartosova, 2000). The model assumes that the housing product is 

homogeneous, that the market operates under perfect competition, that buyers and sellers have perfect 

information, and that the market is in equilibrium (Chau & Chin, 2003). A rational consumer will 

locate within the flood risk area only if they are compensated for potential losses (MacDonald, 1987). 

Therefore, properties exposed to risk are expected to be priced at a discount compared with properties 

that are not, all else being equal. The expected losses from flooding should be equal to the price 

discount (Morgan, 2007).  

 

2.2. Variation in flood risk effects across studies 

As previously noted, research exploring the relationship between flood risk and house prices has 

produced mixed and inconclusive results. This becomes most evident from previous meta-analyses 

(Daniel et al., 2009; Beltrán et al., 2018), as they analyze and combine the results of all relevant 

studies to arrive at an overall effect. Daniel et al. (2009) have 117 point estimates from 19 primary 

studies for the relative change in house price for houses located in a 100-year floodplain in their meta-

sample. These estimates range from -52% to +58%, with approximately 70% of the estimates being 
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negative and an average of around -2%. Beltrán et al. (2018) retrieved 349 estimates from 37 studies, 

ranging from -75.5% to +61%. In their meta-sample, 33 of 37 studies report an average discount for 

floodplain houses. The average for all estimates is -6.1%. It is crucial to emphasize that this represents 

merely the mean of the estimates and does not capture the overall effect on property values located in 

a floodplain. The overall effect must be computed using meta-analysis with weights assigned to each 

estimate. Given that the majority of studies indicate a price discount, the literature reporting premiums 

for floodplain locations will be reviewed first. 

 

Bin & Kruse (2006) conducted a study on the impact of flood hazard on residential property values in 

Carteret County, a coastal county in North Carolina. They discover a 5 to 10% discount for properties 

situated in an inland flood zone. Conversely, for properties located in coastal flood zones, an increase 

in property values is observed. They conclude that being situated within a coastal flood zone and 

proximity to coastal water are so intertwined that it is impossible to disentangle the two effects on 

property values. Morgan (2007) similarly identifies a price premium for properties situated within the 

floodplain. This research is conducted in Santa Rosa County in Florida, which also has a coastline. 

Subsidized flood insurance programs reduce expected flood losses. This can then lower homeowners’ 

risk perception (Morgan, 2007). As a result, the amenities of living close to the coast may outweigh 

the risk associated with it. Consequently, floodplain properties may reveal a premium. Regression 

results incorporating a post-flood interaction term indicate a decrease in property values. This implies 

that the damage inflicted by a storm reinforced homeowners' perception of flood risk. The heightened 

perceived flood hazard diminishes the appeal of certain amenities associated with coastal living 

(Morgan, 2007).  

The literature emphasizes the significance of risk awareness (Belanger et al., 2018). According to 

Samarasinghe & Sharp (2010), the discount associated with location in a flood zone is dependent on 

the availability of flood maps. This aligns with the findings of Belanger et al. (2018), who observe 

that extensive flood awareness campaigns have played a role in enhancing people's consideration of 

flood risk in the property market. Other studies argue that it is the occurrence of a hazard that leads to 

the increase in risk awareness and lower property prices in flood zones (Bin & Polasky, 2004; 

Hallstrom & Smith, 2005). The enhanced risk awareness is greatest immediately after the flood and 

decreases over time, eventually disappearing after five to six years. (Atreya et al. 2013; Bin & Landry, 

2013). The decay in risk perceptions is consistent with Tversky’s and Kahneman’s theory of 

availability heuristic. The availability heuristic is a cognitive bias whereby people rely on readily 

available information or examples that come to mind easily when making decisions or forming beliefs 

(Bin & Landry, 2013). Atreya & Ferreira (2015) found that whether a property is actually inundated 

determines the discount after a flood event and that whether a property is situated in a floodplain or 

not makes no significant difference. Studies that do not account for whether or not houses in 
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floodplains are also in the inundated area overestimate the information effect of a flood, claim Atreya 

& Ferreira (2015). Hino & Burke (2021) suggest that the real estate market's unique characteristics, 

which set it apart from the theoretical market where asset prices accurately reflect all relevant 

information, could be the cause of the inconsistent pricing of risk in property values. The differences 

in discounts as a result of people's risk awareness indicate a subjective assessment of the probability 

of a house flooding (Knuth et al., 2014).  

The results from previous meta-regressions (Daniel et al., 2009; Beltrán et al., 2018) demonstrate a 

discount for location in a floodplain. Daniel et al. (2009) report a discount of -0.6%, while Beltrán et 

al. (2018) reveals a more substantial discount of -4.6%. Both studies discover differences in pre- and 

post-flood estimates, confirming that recent floods cause homeowners' perceptions of flood risk to 

change. Additionally, they observe that properties in coastal flood risk zones sell at a premium, 

resulting from the correlation between floodplain location and the amenities associated with coastal 

proximity. Finally, Beltrán et al. (2018) find that including a variable measuring time elapsed since 

the most recent flood has significant impact on the effect of flood risk on house prices.  

This review of the literature shows that flood risk has a negative impact on house prices. The 

capitalization of flood risk in house prices is influenced by people’s perception of risk. The awareness 

of flood risk tends to rise due to new information, such as the availability of flood maps or actual 

flood events and diminishes over time. 

 

2.3. Hypotheses 

The literature provides a basis for formulating hypotheses related to the research questions. In 

addressing the main research question, the assumption is that the overall impact of flood risk on house 

prices in the studies within this meta-sample will closely resemble the overall effect identified in 

previous meta-analyses. The hypothesis is therefore formulated as follows: 

 

H1: The overall effect of flood risk on house prices is negative and will be around the same order of 

magnitude as the discounts found in previous meta-analyses. 

 

The following is the hypothesis for sub-question 2: 

 

H2: The variability in the effect size can be attributed to factors such as the geographical regions 

where the primary studies were conducted, the flood history of those areas impacting people's risk 

perception, and various study characteristics, such as the consideration of amenities in the analysis. 
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3. META-ANALYSIS: DATA & METHODS 

 

The process of conducting a meta-analysis involves the following steps (Stanley, 2001). The first step 

is to include all relevant studies on the subject from standard databases using a precise combination of 

keywords. The next step entails selecting a summary statistic and transforming it into a common and 

comparable metric. This metric, referred to as the effect size, will function as the dependent variable 

in the meta-regression analysis. The third step is choosing moderator variables and coding them, these 

will be the independent variables in the regression. The final steps are conducting a meta-regression 

analysis and subjecting this to specification testing (Stanley, 2001).  

 

Each section in this chapter delineates a separate step in the process of doing a meta-analysis. Since 

this study builds upon previous research by Daniel et al. (2009) and Beltrán et al. (2018) many of the 

same methods are used in this research. Maintaining consistency in the methods employed ensures a 

more effective comparison of results and allows for a robust examination of the evolution or 

continuity of patterns over time. 

 

3.1. Data collection for meta-analysis 

The first step involves the inclusion of all relevant studies. The databases accessible and used to 

collect the population of studies for this research were SmartCat and Google Scholar. This study only 

looked for papers published after 2013, as the Beltrán et al. (2018) meta-sample includes all relevant 

studies up until then. The following Boolean search strategy is copied from Beltrán et al. (2018): 

 

(Flood* OR Inundat* OR Hurricane*) AND (Propert* OR Hous* OR Resident* OR “Real Estate”) 

 

This word combination yielded a large number of results; however, many of the studies found were 

not useable. Consequently, alternative methods were explored by incorporating additional keywords 

into the search strategy, which were Hedonic* and Floodplain. Every discovered paper underwent 

scanning based on its title, abstract, introduction, methodology, and tables. The papers that appeared 

to be relevant for the meta-sample were saved for further examination and were later fully analyzed. 

For the studies to be considered sufficiently homogeneous to be included in the meta-sample, they 

must meet the following requirements (Daniel et al., 2009; Beltrán et al., 2018): 

 

i. An econometrically estimated Hedonic Price Function is used to derive estimates, this should 

be the standard hedonic model or a Difference-in-Differences model.  

ii. Estimates must be reported as a percentage of average house prices, after recalculation if 

necessary. 
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iii. Flooding risk should be reflected by a dummy variable which indicates location within the 

500-year or 100-year floodplain.  

 

These requirements led to the exclusion of particular studies. In some cases, the flood risk is not 

explicitly indicated as location in the 500-year floodplain or the 100-year floodplain. Egbenta et al. 

(2015), for instance, describe the floodplain as "an area that is likely to flood in the event of the river 

overflowing its bank", but no probability is given. Bakkensen et al. (2019) do provide the probability 

for flood risk. However, their study design designates the 100-year flood zone as the treatment group 

and the 500-year flood zone as the control group. This approach yields estimates that are not directly 

comparable with the rest of the estimates. Studies that specify flood risk as distance to the river or 

elevation are also excluded (Rajapaksa et al., 2016; Cohen et al., 2021; Hsieh, 2021). Hirsch and 

Hahn's (2018) model provides a discount for floodplain properties in euros, but no average house 

prices are provided, making it not possible to calculate a percentage. Alternative estimation 

approaches, such as the linear mixed effects model used by Belanger and Bourdeau-Brien (2018) or 

the repeat sales model used by Beltrán et al. (2019), are also left out. Repeat sales models specifically 

capture the price changes of individual properties over time in response to certain events. However, 

they do not provide information on the price differentials between different properties. Consequently, 

the computation of a price differential using repeat sales models is not possible (Beltrán et al., (2018).  

 

The final database is made up of 14 studies with a total of 191 estimates, as can be seen in Table 1. 

There is a wide range of estimates between studies, ranging from 2 to 40. Studies that have a 

relatively large number of estimates often employ difference-in-differences specifications and use 

different control groups in their models. The majority of studies were conducted in the United States, 

with the exceptions of Pommeranz & Steininger (2020) in Germany and Nguyen et al. (2022) in New 

Zealand. The publication year of the studies spans from 2015 to 2023. On average, most studies find 

that houses in floodplains sell for less, except for Nyce et al. (2015) and Atreya & Czajkowski (2019), 

which are studies conducted in areas with a coastline. The mean effect size for all studies, -5.2%, 

closely aligns with the meta-sample average of -6.1% reported by Beltrán et al. (2018). The standard 

deviation of 0.163 indicates a relatively large amount of variability in effect sizes. The estimates range 

from a -84% discount to a 41.4% premium. 

 

TABLE 1: Summary of studies and their estimates included in the final database 

No. Authors Year Country Location2 Estimates 
Effect Size (T) 

Mean S.D. Min. Max. 

1 Atreya & Ferreira 2015 US Georgia 15 -0.122 0.331 -0.626 0.414 

2 Lee  2015 US Georgia 6 -0.015 0.062 -0.100 0.091 

3 Nyce et al. 2015 US Florida 24 0.096 0.087 0.007 0.204 
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4 Meldrum  2016 US Colorado  12 -0.044 0.055 -0.150 0.015 

5 Zhang 2016 US ND, MN 40 -0.089 0.088 -0.360 0.014 

6 
Atreya & 

Czajkowski 
2019 US Texas 12 0.148 0.147 0.004 0.353 

7 Zhang & Leonard 2019 US ND, MN 28 -0.086 0.071 -0.274 0.019 

8 
Hennighausen & 

Suter 
2020 US Colorado  8 -0.068 0.059 -0.190 0.011 

9 
Pommeranz & 

Steininger 
2020 GER Dresden 2 -0.058 0.001 -0.059 -0.057 

10 Yi & Choi  2020 US Iowa 16 -0.188 0.265 -0.840 0.095 

11 Catma 2021 US SC 2 -0.164 0.008 -0.170 -0.159 

12 Miller & Pinter 2022 US OR, CO, ND 12 -0.047 0.063 -0.157 0.094 

13 Nguyen et al. 2022 NZ1 Dunedin 12 -0.061 0.011 -0.079 -0.046 

14 Livy 2023 US Ohio 2 -0.165 0.041 -0.194 -0.136 

  Overall       191 -0.052 0.163 -0.840 0.414 

 
Note here that effect sizes have already been calculated. 1 NZ = New Zealand, 2 ND = North Dakota, MN = Minnesota, SC = 

South Carolina OR = Oregon, CO = Colorado  

 

3.2. Calculating effect sizes and standard errors 

The second step involves transforming the estimates from the primary studies into a comparable 

metric, the effect size. The effect size will function as the dependent variable in the meta-regression. 

Additionally, for each effect size, the corresponding standard error must be computed, determining 

the weight assigned to the estimate in the regression analysis. The calculation of effect sizes and their 

standard errors relies on the methodology and regression equation applied in the primary studies. 

The following paragraphs detail the steps involved in calculating these values for different models. 

 

A semi-log functional form for the hedonic price function is used consistently by all studies in the 

meta-sample. Equation (2) shows the basic hedonic price function without interaction variables.  

 

ln(𝑃𝑖) = 𝛽0 + 𝛽1𝐹𝑃𝑖 + ∑ 𝛽𝑗𝑋𝑖𝑗 + 𝜀𝑖𝑗=1         (2) 

 

Here, ln(𝑃𝑖) is the natural log of house prices. 

𝛽0 is the intercept. 

𝐹𝑃 is a dummy variable that takes the value of 1 if the property sale is within the designated 

floodplain area, 𝛽1 is the corresponding coefficient. 

The operator ∑ 𝛽𝑗𝑋𝑖𝑗𝑗=1  represents the summation of other independent variables used in the primary 

studies, such as housing and locational characteristics.  

𝜀𝑖 is the error term. 
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The effect size of interest is the house price difference associated with location in a flood zone. The 

effect size is referred to as T, with 𝑠𝑡 the associated standard errors (Daniel et al., 2009; Beltrán et al., 

2018). With a semi-log functional form, the effect size T equals 𝛽1, the coefficient for the floodplain 

dummy. The standard error 𝑠𝑡  is then also the standard error for the coefficient 𝛽1, which is typically 

provided in the studies' regression tables. There are also studies in the meta-sample that use spatial 

econometric models. Beltrán et al. (2018) calculated the total effect for those estimates. However, for 

the sake of simplicity, and considering that the results are largely unaffected, this research only uses 

the direct effect. 

 

Besides the basic model outlined in equation (1), studies frequently employ DiD models to assess the 

impact of a recent flood on housing prices. This framework contains two time periods, “pre” and 

“post” and two groups, “treatment” and “control” (Goodman-Bacon, 2021). Equation (3) shows the 

hedonic price function for a DiD model. 

 

ln(𝑃𝑖𝑡) = 𝛽0 + 𝛽1𝐹𝑃𝑖 + 𝛽2𝐹𝑙𝑜𝑜𝑑𝑖𝑡 + 𝛽3(𝐹𝑃𝑖 ∗ 𝐹𝑙𝑜𝑜𝑑𝑖𝑡) + ∑ 𝛽𝑗𝑋𝑖𝑗 + 𝜀𝑖𝑡𝑗=1    (3) 

 

The variable 𝐹𝑙𝑜𝑜𝑑 is a dummy variable that takes the value of 1 if the property transaction happened 

after a flood event. 𝛽2 therefore measures the relative difference in sale prices for all houses sold after 

the flood. 𝛽1 measures the difference in house prices between the floodplain and the control group 

before any flood. 𝛽3 reflects the additional impact on house prices within the floodplain after the flood 

event. 𝛽1 and 𝛽3 can then be added to determine the effect size T for houses in a floodplain that were 

sold after a flood (Beltrán et al., 2018). To calculate the standard error for the sum of two coefficients, 

the following formula is used: 

 

𝑆𝐸(𝛽1 + 𝛽2) =  √𝑆𝐸(𝛽1)2 + 𝑆𝐸(𝛽2)2 + 2 ∗ 𝜌 ∗ 𝑆𝐸(𝛽1) ∗ 𝑆𝐸(𝛽2)   (4) 

 

𝜌 is the correlation between the two coefficients 𝛽1 and 𝛽2. However, in many studies, the correlation 

is not provided. Instead, a value of -0.9 or +0.9 is used. The sign is positive when 𝛽1 and 𝛽2 share the 

same sign, and negative when they do not (Daniel et al., 2009).  

 

Figure 1 depicts the funnel plot illustrating the relationship between effect sizes and their precision. 

The pseudo 95% confidence intervals are also plotted. A funnel plot is commonly used to visually 

explore publication bias. In the absence of publication bias and heterogeneity, the anticipated pattern 

would involve the majority of studies being randomly dispersed within the confidence interval region, 

resembling an inverted funnel shape (StataCorp, 2023). The figure makes it evident that there are a 

substantial number of estimates outside the 95% confidence interval. The results of an Egger et al. 
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(1997) regression asymmetry test reveal significant publication bias, suggesting a tendency to report 

more negative impacts. Daniel et al. (2009) and Beltrán et al. (2018) also find evidence of publication 

bias. However, Daniel et al. (2009) state that publication bias may be mistaken for observable and 

unobservable heterogeneity among the effect sizes. Between-study heterogeneity is another common 

reason for an asymmetrical funnel plot (StataCorp, 2023). Additional information regarding effect 

sizes, confidence intervals, and heterogeneity statistics can be found in the forest plot included in the 

appendix. 

 

 

FIGURE 1: Funnel plot of the 191 effect sizes against their standard error 

Notes: Random effects model, REML method  

 

3.3. Incorporating and coding moderator variables 

The third step is to incorporate and code the independent variables for each estimate. These are 

referred to as "moderator variables," indicating study characteristics that are thought to be 

consequential (Stanley, 2001). Dummy variables should be coded for the use of different data sets and 

modelling choices. However, not every minor study characteristic can be coded and analyzed. In this 

study, moderator variables are selected based on a review of previous meta-analyses and the existing 

literature on flood risk and property prices. The specific attributes are extracted from the primary 

studies' methodology, descriptive statistics, and regression tables.  

 

Table 2 displays the variables included in the meta-analysis along with their corresponding summary 

statistics. The variables incorporated in the regression are mostly the same as the variables included in 

Beltrán et al. (2018), except for certain omitted variables that were not applicable or relevant to the 

data in the meta-sample. The following variables are left out: dd_afterlaw, linear, box_cox, and 

published. The variable “dd_afterlaw” is a dummy variable that takes the value of 1 if the effect is 
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from a DiD model following a change in regulation for floodplain-designated areas, which was not 

the case for any of the primary studies' estimates. “Linear” and “box_cox” relate to specifications of 

the hedonic price function. However, as mentioned previously, only semi-log functional forms are 

utilized. The variable “published” acts as a dummy variable indicating studies published in refereed 

journals. As all studies in this context meet this criterion, the variable is not considered in the analysis. 

Furthermore, additional variables were introduced in this model. These variables are: “time_fe” and 

“near_miss”. Most studies did not convert prices to a constant measure. However, many did 

incorporate month and/or year dummies to capture the seasonal effect and macroeconomic impact 

over time (Zhang, 2016). This accounts for the introduction of an additional dummy variable, which is 

the variable “time_fe”. Beltrán et al. (2018) include the variable "flooded" because the price discount 

is expected to be greater for inundated properties following a flood because of a change in risk 

perception. This is different for properties in flood zones that were not inundated as homeowners 

respond better to what they have visualized (Atreya & Ferreira, 2015). Consequently, the dummy 

variable "near miss" for properties in flood zones that were not inundated has also been included. 

 

The months since the most recent major flood are calculated for each estimate. This implies that, for 

each study area, the flood history is examined or retrieved with the help of Google. The months 

elapsed is calculated by subtracting the date of the most recent flood from the median sample year in 

the primary study. Months elapsed are calculated for both pre- and post-flood estimates in studies 

using DiD models, which explains the large variation in values for the variable. This variable is of 

considerable interest, as it plays a crucial role in accounting for changes in flood risk perception based 

on the time elapsed since the last flood event (Beltrán et al., (2018). 

 

The main variable of interest is (Floodrisk). This variable is coded as 0.01 for properties situated in a 

100-year floodplain and as 0.002 for properties in a 500-year floodplain. In the regression, this 

variable's coefficient can be interpreted as the percentage discount for houses located in the 100-year 

floodplain (Beltrán et al., 2018).  

 

The next set of moderator variables accounts for the context of the primary studies. The mean square 

footage and square price of houses in the studies are obtained from descriptive tables, after which the 

natural logarithm is calculated. If the values are initially provided in meters or euros, a conversion is 

applied. While nearly half of the estimates involve post-flood dummies, only a small fraction provides 

information about the actual inundation of properties. Around 20% of the estimates come from studies 

conducted in areas with a coastline. The majority of studies incorporate variables in their regression 

models to account for water-related amenities. The median sample year for all studies in the meta-

sample is approximately 2007, reflecting a difference of around twelve years compared to the median 
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sample year in Beltrán et al. (2018). The time span of property transaction data in the studies varies 

from 6 to 23, with a mean time span of 11.77. 

 

TABLE 2: Meta-analysis descriptive statistics  

Variables Description N Mean S.D. Min. Max. 

Dependent variable      

Effect Size (T) Relative price differential for floodplain location 191 -0.052 0.163 -0.840 0.413 

Flood risk perception 
     

months Number of months since previous major flood 191 178.7 202.2 6 852 

Flood risk 
      

Flood Risk 

Variable = 0.01 if the effect refers to the 100-

year floodplain and 0.002 for a 500-year 
floodplain 

191 0.009 0.003 0.002 0.01 

 

Study context 
       

logfeet 
Natural log of the mean square feet of the 

properties per study 
191 7.39 0.30 6.01 8.18 

 

 

logprice 
Natural log of the mean price of the houses per 

study in US dollars 
191 12.12 0.55 10.82 14.11 

 

 

flooded 
Dummy = 1, if the effect refers to flooded 

properties 
191 0.047 0.212 0 1 

 

 

scnd_flood Dummy = 1, if the effect refers to a second flood 191 0.063 0.243 0 1  

near_miss Dummy = 1, if the effect refers to properties that 

were not inundated during a flood 
191 0.047 0.212 0 1 

 

 

dd_after Dummy =1, if the effect corresponds to a post-

flood DID estimate. 
191 0.408 0.493 0 1 

 

 

coast Dummy = 1, if the study area has a coastline 191 0.199 0.400 0 1  

Control variables of study 
      

amenities 
Dummy = 1, if the study includes variables 

controlling for the amenity value of proximity to 

waterbodies 

191 0.832 0.374 0 1  

real_p 
Dummy = 1, if the study converts prices to a 
constant measure prior to estimation 

191 0.487 0.501 0 1 

 

 

time_fe Dummy = 1, if the study includes time-fixed-

effects to control for time trends 
191 0.948 0.223 0 1 

 

 

Model characteristics 
      

spatial Dummy = 1, if the effect corresponds to a spatial 

econometric model 
191 0.393 0.49 0 1  

dd_hpm Dummy = 1, if the effect corresponds to a DID 

specification 
191 0.691 0.463 0 1  

Study characteristics 
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med_sampleyear The median sample year of the study 191 2006.8 4.53 1989 2014  

time_span The time span of the data covered in the study 191 11.77 4.90 6 23  

 

After computing the effect sizes, standard errors, and coding moderator variables for each estimate, it 

is essential to declare the data as metadata in Stata. This can be done with the command “meta set es 

se”, where es and se are the variables effect size and standard error. Once the data is declared as 

metadata, all subsequent meta commands will automatically use these variables in the meta-analysis. 

 

3.4. Conducting meta-analysis and meta-regression 

The final steps involve conducting the meta-analysis and meta-regression. Meta-analysis and meta-

regression can be used to explore the between-study heterogeneity. In meta-analysis, estimates are 

grouped into different subsamples based on specific characteristics and an overall effect size is 

computed for each subsample. Analyzing overall effect sizes across various subsamples enables a 

thorough examination and potential clarification of the observed between-study heterogeneity 

(StataCorp, 2023). For each subsample, the number of estimates, the summary statistic with the 95% 

confidence interval, tau2, the Q-statistic, and I2 are reported. The summary statistic is the combined 

effect size, with H0 that the summary effect size is insignificantly different from zero. Tau2 represents 

the between-study variance, a larger tau2 indicates greater heterogeneity among studies. I2 is the 

percentage of variability in effect sizes which is not caused by sampling error and is derived from the 

Q-statistic, which also assesses the presence of heterogeneity. H0 of the Q-stat is that all studies 

contained in the sample share a single effect size (Beltrán et al. 2018).  

 

Random effects and fixed effects models are commonly used to combine effect sizes. Both models 

typically compute weight to estimates using the inverse-variance estimation method, with more 

precise estimates receiving more weight (Beltrán et al., 2018). Fixed effects models assume that all 

studies in the analysis share a common true effect size. In this case, this is implausible since studies 

differ in terms of both the methodology as well as the underlying population. In contrast, the random 

effects model permits the effect size to vary across different observations (Beltrán et al., 2018).  

 

In their paper, Beltrán et al. (2018) address the issue of weighting, noting that models using random 

effects and fixed effects weighting schemes treat each observation as an individual study, resulting in 

improper weighting of studies that contribute multiple estimates of the effect size. In addition to the 

model that calculates weight using the inverse error-variance, they used an alternative weighting 

scheme. This approach determines the weight for each estimate by taking the square root of the mean 

sample size in the study and dividing it by the number of estimates per study. This method is also 

used to manually calculate the weight for each estimate in this study. The calculated weights have 

been incorporated into the database, enabling the execution of models using both weighting schemes.  
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The objective of the meta-regression is to explore and explain the relationship between the effect sizes 

and the moderators. The equation for the meta-regression is expressed as follows:  

 

𝑇𝑖 =  𝛽0 + 𝛽1𝐹𝑙𝑜𝑜𝑑𝑟𝑖𝑠𝑘𝑖 + 𝛽2𝑀𝑜𝑛𝑡ℎ𝑠𝑖  + 𝛽3𝑋3𝑖 + . . . + 𝛽17𝑋17𝑖 +  𝜀𝑖    (5) 

 

Here, 𝑇𝑖  is the effect size for the 𝑖𝑡ℎ estimate. 

𝛽0 is the intercept. 

𝛽1 is the coefficient for the variable flood risk, which, as previously stated, is interpreted as the 

percentage discount for houses located in the 100-year floodplain. 

𝛽2 is the coefficient for the variable months, indicating the number of months elapsed since the 

previous flood event.  

𝑋3𝑖 , … 𝑋17𝑖 represent the remaining moderator variables included in the regression.  

𝜀𝑖 is the error term. 

 

In interpreting 𝛽1, it is important to note the assumption made by Beltrán et al. (2018):   

“Making the assumption that any change in the objective risk of flooding ceteris paribus results in an 

equal change in the subjective risk of flooding we thus identify the relationship between the house 

price discount and the subjective risk of flooding from the inter-study variation in the objective risk of 

flooding.” (p. 675, Ecological Economics).  

 

The meta-regression utilizes a random effects model with weights inversely related to the error 

variance. In this case, the meta-regression does not allow for an alternative weighting scheme. 

Different methods are proposed for estimating the between-study variability. Restricted maximum 

likelihood (REML) is the default estimation method because it performs well in most scenarios 

(StataCorp, 2023). This method is also used in this meta-regression.  

 

Studies in coastal flood-prone areas are subject to significant publication bias and produce estimates 

indicating a price premium. Including both coastal and inland studies in the regression might 

jeopardize the internal validity of the estimates and is thus problematic (Beltrán et al., 2018). To 

examine this, the regression is conducted both with and without coastal estimates. When the coastal 

estimates are included, the model exhibits a substantially lower R-squared, which measures the 

goodness of fit, than when they are excluded. Next to that, the coefficient on (Flood risk), the variable 

of interest, is positive and insignificant, contrary to the expected sign. Consequently, coastal 

estimates, reported in studies 6, 11, and 13, have been omitted from the final regressions. The 

regression that incorporates coastal estimates can be found in the appendix. 
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In the literature, various functional forms are frequently employed to examine the decay of flood risk 

discount over time (Atreya & Ferreira, 2015; Atreya et al., 2013; Bin & Landry, 2013). These include 

a linear specification, a logarithmic transformation, a ratio specification, and a square root 

specification. Beltrán et al. (2018) find that the ratio transformation is the preferred transformation for 

the variable (months) in their regression based on the goodness-of-fit criterion. This study also tests 

the various functional forms, and the results confirm the preference for the ratio transformation in the 

regression analyses. Therefore, a linear functional form and the ratio functional form are included in 

the meta-regressions. In Model (1), a linear function is employed, expressed as 𝑓(𝑚𝑜𝑛𝑡ℎ𝑠) =

𝑚𝑜𝑛𝑡ℎ𝑠, in Model (2), the ratio function is defined as  𝑓(𝑚𝑜𝑛𝑡ℎ𝑠) = (𝑚𝑜𝑛𝑡ℎ𝑠 − 1) / 𝑚𝑜𝑛𝑡ℎ𝑠.  

 

To further assess robustness, regressions are initially conducted without study fixed effects and 

subsequently with study fixed effects. The introduction of dummies for individual studies helps 

account for unobserved heterogeneity at the study level, which is particularly important given the 

diverse regions in which the studies are conducted. The study from Atreya & Ferreira (2015) serves as 

the reference study in this regression. Conducted in Georgia, U.S., it explores the impact of tropical 

storm Alberto on house prices. This study reports the highest flood risk discount in the meta-sample, 

simplifying the interpretation of the meta-regression. 
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4. RESULTS & DISCUSSION 

 

4.1. Subsample meta-analysis and meta-regression results 

Table 3 provides the random-effects model statistics for the combined effect sizes of different 

subsamples. For each subsample, the number of estimates, the summary statistic with the 95% 

confidence interval, tau2, the Q-statistic, and I2 are reported. In Table 3, weights for each estimate are 

calculated using the inverse-variance estimation method, while in Table 4, weights are calculated 

based on sample size. The two models show consistent signs for the effect sizes, with small variations 

in magnitudes and occasional differences in significance level. The highly significant Q-statistic and 

high percentage of I2 indicate significant heterogeneity in effect sizes. This emphasizes the suitability 

of using the random effects model to address the observed variability in the data. 

 

TABLE 3: Meta-analysis: Summary statistics for RE model with inverse variance weights 

Coast N 
Summary 

statistic 

95% conf. 

Interval 
tau2 Q-stat I2 (%) 

All 191 -0.034*** [-0.050; -0.018] 0.0104 3193.48*** 99.25 

100-year floodplain 166 -0.035*** [-0.054; -0.017] 0.0120 3014.52*** 99.35 

500-year floodplain 25 -0.015* [-0.031; 0.001] 0.0010 164.18*** 90.70 

Inland 153 -0.052*** [-0.062; -0.041] 0.0027 1344.05*** 97.51 

Inland 100-year 132 -0.056*** [-0.068; -0.044] 0.0031 1182.89*** 97.86 

Inland 500-year 21 -0.026*** [-0.045; -0.007] 0.0010 125.33*** 89.80 

DID Inland Pre 42 -0.045*** [-0.059; -0.031] 0.0012 564.99*** 95.65 

DID Inland Post 72 -0.089*** [-0.113; -0.065] 0.0067 253.21*** 82.30 

Coast 38 0.071*** [0.024; 0.118] 0.0203 1845.43*** 99.16 

DID Coast Pre 12 0.037 [-0.028; 0.102] 0.0112 71.81*** 98.78 

DID Coast Post 6 -0.065*** [-0.082; -0.049] 0.0000 1.11 0.00 

Notes: *, ** and *** implies rejection of H0 at the 10%, 5%, and 1% significance level  

 

TABLE 4: Meta-analysis: Summary statistics for RE model with sample size weights 

Coast N 
Summary 

statistic 

95% conf. 

Interval 
tau2 Q-stat I2 (%) 

All 191 -0.045*** [-0.073; -0.017] 0.0104 3193.48*** 99.25 

100-year floodplain 166 -0.025* [-0.053; -0.004] 0.0120 3014.52*** 99.35 

500-year floodplain 25 -0.106*** [-0.157; -0.055] 0.0010 164.18*** 90.70 

Inland 153 -0.078*** [-0.101; -0.055] 0.0027 1344.05*** 97.51 

Inland 100-year 132 -0.062*** [-0.084; -0.040] 0.0031 1182.89*** 97.86 

Inland 500-year 21 -0.119*** [-0.175; -0.063] 0.0010 125.33*** 89.80 

DID Inland Pre 42 -0.064*** [-0.094; -0.034] 0.0012 564.99*** 95.65 

DID Inland Post 72 -0.104*** [-0.160; -0.047] 0.0067 253.21*** 82.30 

Coast 38 0.092*** [0.044; 0.139] 0.0203 1845.43*** 99.16 

DID Coast Pre 12 0.071** [0.003; 0.140] 0.0112 71.81*** 98.78 

DID Coast Post 6 -0.067*** [-0.085; -0.049] 0.0000 1.11 0.00 
Notes: *, ** and *** implies rejection of H0 at the 10%, 5%, and 1% significance level  
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The overall effect size indicates a discount of -3.4% for all houses in floodplains. When examining 

properties located in inland floodplains, this discount is larger at -5.2%. For coastal properties, the 

effect size is +7.1%. As mentioned earlier, this is most likely the result of not adequately controlling 

for amenities associated with proximity to the coast (Bin & Kruse, 2006). According to Beltrán et al. 

(2018), it is currently impossible to draw reliable conclusions from studies conducted in coastal 

regions. 

 

When comparing the 100-year floodplain to the 500-year floodplain, the 100-year floodplain is 

expected to have a higher discount due to the higher expected flood damages. Notably, this 

expectation holds true in the meta-analysis model with inverse variance weights, but it does not align 

with the effect sizes observed in the model using sample size weights. This is likely a consequence of 

some relatively large effect sizes for the 500-year floodplain, accompanied by high standard errors. In 

the first model, the weight assigned to these estimates is small. However, in the second model, the 

information on standard errors is disregarded, resulting in larger weights being attached to them. 

 

The summary statistics indicate a significantly greater discount for floodplain houses post-flood 

compared to pre-flood. This pattern holds true for both inland and coastal properties. More precisely, 

the effect size of -8.9% indicates that the discount for inland floodplain houses after a flood event is 

roughly double the discount observed before a flood event, which stands at -4.5%. The decrease in 

property values following a flood event is consistent with the literature. Morgan (2007) discovered 

that Hurricane Ivan increased flood risk perceptions and expected flood losses. Bin & Polasky (2004) 

similarly observe a significant difference in the discount between pre-flood and post-flood sales, 

where the post-flood discount is more than twice the pre-flood discount. Recent exposure to flooding 

heightens the perceived risks and costs linked to such events. Conversely, a lack of experience with 

flooding tends to mitigate these perceptions (Bin & Landry, 2013). 

 

Table 5 displays the outcomes of the meta-regression, both with and without study fixed effects, 

incorporating both functional forms of the variable (months). Initially, the results of the model without 

study fixed effects will be discussed, followed by an examination of the model with study fixed 

effects as a robustness check. 
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TABLE 5: Meta-regression results 

Variables 
Without study FE With study FE 

(1) (2) (1) (2) 

Flood risk perception    

𝑓 (𝑚𝑜𝑛𝑡ℎ𝑠) -0.000056 0.9823*** 0.000044 0.9674*** 

 (0.00004) (0.172) (0.00004) (0.148) 

Flood risk     
Flood Risk -4.2348*** -3.8696*** -4.7589*** -4.7133*** 
 (1.458) (1.274) (0.942) (0.683) 

Study context     
logfeet 0.0421*** 0.0484*** 0.0401*** 0.0414*** 

 (0.014) (0.011) (0.013) (0.010) 

logprice 0.0439*** 0.0288*** 0.0529 0.0472* 

 (0.014) (0.010) (0.033) (0.025) 

flooded -0.2917*** -0.3079*** -0.2036*** -0.2241*** 
 (0.050) (0.049) (0.051) (0.050) 

scnd_flood -0.0464** -0.0050 -0.0478** -0.0127 

 (0.022) (0.022) (0.020) (0.019) 

near_miss 0.0890*** 0.0785*** 0.0959*** 0.0793*** 
 (0.031) (0.029) (0.028) (0.025) 

dd_after -0.0111 0.0395*** 0.0165* 0.0473*** 
 (0.012) (0.011) (0.001) (0.008) 

Control variables of study    
amenities 0.0254* 0.0241* -0.0161 -0.0215*** 
 (0.014) (0.013) (0.015) (0.008) 

real_p -0.0022 0.0027 0.0110 -0.0014 
 (0.013) (0.011) (0.015) (0.010) 

time_fe -0.0061 0.0007 -0.0008 -0.0002 
 (0.016) (0.014) (0.013) (0.007) 

Model characteristics    
spatial 0.0012 0.0061 -0.0004 -0.0002 
 (0.008) (0.007) (0.005) (0.002) 

dd_hpm -0.0042 -0.0060 -0.0106 0.0018 
 (0.011) (0.009) (0.013) (0.010) 

Study characteristics    

med_sampleyear -0.0049*** -0.0059*** -0.0192** -0.0172*** 
 (0.002) (0.001) (0.007) (0.006) 

time_span -0.0006 -0.0030** -0.0015 -0.0016 

 (0.001) (0.001) (0.002) (0.001) 

Study     

2   0.2582*** 0.2494*** 

   (0.057) (0.044) 

3   0.3267*** 0.3137*** 

   (0.060) (0.047) 

4   0.2676*** 0.2798*** 

   (0.056) (0.047) 

5   0.3789*** 0.3419*** 

   (0.080) (0.068) 

7   0.3881*** 0.3636*** 
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   (0.085) (0.070) 

8   0.3824*** 0.3505*** 

   (0.088) (0.072) 

9   0.4061*** 0.3859*** 

   (0.092) (0.074) 

10   0.2978*** 0.2759*** 

   (0.078) (0.068) 

12   0.3401*** 0.3138*** 

   (0.087) (0.071) 

14   0.3043*** 0.2685*** 

   (0.107) (0.091) 

     

Constant 9.0803*** 10.1539*** 36.3802*** 32.4827*** 

  (3.271) (2.837) (10.616) (10.916) 

Observations 153 153 153 153 

R-squared 74.66 82.38 95.21 99.49 
Note: REML Random-effects meta-regression. Dependent variable is Effect size. Standard error in  

parentheses. *** , **, * indicating significance at 1%, 5% and 10%, respectively.  

Reference study = 1 (Atreya & Ferreira, 2015).  

 

The discount for properties in a floodplain is greatest immediately after a flood and decreases over 

time, ultimately disappearing after about 5 years (Atreya et al. 2013; Bin & Landry, 2013). 

Interestingly, in model (1), where 𝑓(𝑚𝑜𝑛𝑡ℎ𝑠), the number of months since the last flood, is linearly 

specified, the variable is not statistically significant. This can be attributed to the linear specification 

assuming a constant effect for each unit increase in months, covering a wide range from 6 to 852. 

Consequently, it fails to capture the pattern of rapidly decaying discounts that vanish after a few 

years. In model (2), where 𝑓(𝑚𝑜𝑛𝑡ℎ𝑠) = (𝑚𝑜𝑛𝑡ℎ𝑠 − 1) / 𝑚𝑜𝑛𝑡ℎ𝑠, the variable is positive and 

highly significant. The ratio specification of the variable is a method of modeling a rapidly 

diminishing return to increases in months. This specification captures the pattern of house price 

recovery more effectively, as the marginal effect of each additional month becomes smaller. The 

higher R-squared indicates a better goodness of fit with this specification, aligning with the findings 

of Beltrán et al. (2018). The positive coefficient for 𝑓 (𝑚𝑜𝑛𝑡ℎ𝑠) indicates that the price discount is 

greatest shortly after a flood and then diminishes over time. 

 

The variable (Flood Risk) is of primary interest; it is statistically significant and negative, as 

anticipated. This reveals that the price difference for houses in a 100-year floodplain is -3.9% 

compared to houses outside the floodplain. This aligns closely with the estimate found in Beltrán et al. 

(2018), which is -4.6%. 

 

The variables (logfeet) and (logprice) exhibit a significant positive impact on the effect size. This 

implies that when the square footage and sale price of a house increase, the negative impact of 

floodplain location on house prices decreases. In the study conducted by Lee (2015), the influence of 
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floodplains on housing prices is investigated using a housing submarket framework characterized by 

median house sale prices. The findings reveal that the impact of floodplain locations on housing 

prices is the most negative in the low-income submarket and positive in the high-income submarket. 

One explanation for this is that the recovery pattern of house prices after a flood in the low-income 

submarket is slower than in the other submarkets, which is reflected in long-term house prices (Zhang 

& Peacock 2005, cited by Lee 2015, p. 246). The positive capitalization in the high-income submarket 

is likely caused by floodplain amenities, such as scenic views. Positive amenities are more prevalent 

in the high-income submarket (Lee, 2015). Additionally, Rajapaksa et al. (2017) point out differences 

in the valuation of environmental amenities and disamenities among various income groups. 

 

Both the variables (flooded) and (near_miss) exert a significant impact on the effect size. As expected, 

properties that experienced flooding exhibit a more considerable discount, while properties in 

floodplains that were not flooded show a decreased discount, all else being equal. Atreya and Ferreira 

(2015) discover that the price discount for inundated properties is substantially greater than for 

comparable floodplain properties that were not inundated during a flood. The difference in discount is 

due to potential uninsurable flood damages as well as psychological costs and suggests that 

homeowners respond better to what they have visualized (Atreya & Ferreira, 2015). These outcomes 

are consistent with the principles of the Availability Heuristic (Atreya & Ferreira 2015; Hennighausen 

& Suter 2020; Kousky & Shabman 2015). The Availability Heuristic implies that in evaluating flood 

risks, individuals are inclined to shape their perceptions based on the ease with which they can bring 

relevant examples to mind. The perception of risk is influenced by both the time that has passed since 

the flood and the severity of the flood (Kousky & Shahman, 2015).  

 

The coefficient on the variable (med_sampleyear) is negative and highly significant. This suggests 

that, all else being equal, the discount for houses in floodplains tends to be greater for transactions that 

occur in later years. One possible explanation for this is a shift over time in public awareness 

regarding climate change and its potential consequences, given that the literature associates flood 

zone price discounts with risk awareness (Belanger et al., 2020).  

 

4.2.  Robustness check 

In the meta-regression that accounts for study fixed effects, all coefficients associated with individual 

studies are positive and highly significant. This implies the existence of systematic differences among 

the studies, which are captured by these dummy variables. The R-squared of 99.49 in this model 

indicates almost all variability in the dependent variable is explained by the independent variables in 

the model and therefore strengthens the robustness of the findings. Comparing this the model that 

does not incorporate study fixed effects, most variables exhibited consistent signs and significance, 

with slight adjustments in magnitude. The difference in house prices between floodplain and non-
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floodplain areas is approximately -4.7%, which does not differ much from the estimate found in the 

model without fixed effects. The other main variable of interest, 𝑓 (𝑚𝑜𝑛𝑡ℎ𝑠), retains high statistical 

significance, with a coefficient closely matching the one in the model without study fixed effects. 

 

4.3. Discussion 

This study finds different estimates for location in a floodplain. In the subsample meta-analysis, effect 

sizes are specified for inland and coastal floodplain properties, properties within 100- and 500-year 

floodplain levels, and properties sold before and after flooding events. Given the limitations to draw 

conclusions from coastal studies (Beltrán et al., 2018) and the widespread focus on 100-year 

floodplains, the effect size for "Inland 100-year" seems to be the most reliable and representative 

estimate within the subsample meta-analysis. The effect size suggests a price difference of -5.6% 

based on 132 observations for houses located in a floodplain compared to those outside the floodplain.  

 

The meta-regression reveals effect sizes for four distinct models. The variation across these models 

stems from the inclusion of either a linear or a ratio specification for the variable (months), addressing 

the time elapsed since the last major flood. Another difference lies in whether study fixed effects are 

included or excluded. Based on the goodness of fit, the preferred model incorporates study fixed 

effects and adopts the ratio specification for 𝑓 (𝑚𝑜𝑛𝑡ℎ𝑠). The model identifies a price difference of -

4.7% for houses situated in a floodplain, specifically focusing on inland flooding within the 100-year 

floodplain. This particular estimate is favored over the one found in the subsample meta-analysis. 

This preference is attributed to the meta-regression's consideration of the short-term impact from 

recent floods (Beltrán et al., 2018).  

 

The results of this meta-analysis are compared with those from prior meta-analyses on the topic 

conducted by Daniel et al. (2009) and Beltrán et al. (2018). Daniel et al. (2009) find a price difference 

of -0.6% for location within a 100-year floodplain, while Beltrán et al. (2018) find a price difference 

of -4.6%. Beltrán et al. (2018) state that the estimate of -0.6 is too small and very different from their 

estimate. The reason for this is that Daniel et al. (2009) incorporate observations from coastal and 

inland studies in their meta-regression. The estimate derived from the preferred model in this study; -

4.7%, closely aligns with the one reported by Beltrán et al. (2018). Moreover, the 95% confidence 

interval of [-6.05, -3.37] for our estimate overlaps with the 95% confidence interval of [-5.81, -3.34] 

found for the preferred estimate in Beltrán et al. (2018). Therefore, it can be concluded that there is no 

significant difference in the estimates. This supports the hypothesis that the discount found is around 

the same order of magnitude as observed in the previous meta-analysis. Furthermore, Beltrán et al. 

(2018) report a similarly significant coefficient for the ratio-transformed variable (months). In their 

model, the coefficient for (flooded) is also negative, but it is not significant. One potential explanation 
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is that they possess fewer inundation estimates in their meta-sample, possibly because recent studies 

more frequently incorporate inundation data in contrast to earlier ones. 

 

Similar to all statistical tools, meta-analysis comes with its own set of limitations. Stanley (2001) 

discusses potential limitations of meta-analysis. First, there may be disagreement about which 

moderator variables should be included in the analysis. The moderator variables included in this 

analysis are drawn from Beltrán et al. (2018), the most recent meta-analysis on this subject. Notably, 

these moderator variables differ slightly from those listed in the meta-analysis conducted by Daniel et 

al. (2009). However, using the same dataset, both models produce similar estimates. Second, there is 

the possibility of giving excessive weight to the results of studies that present a large number of 

estimates. To address this concern, an alternative weighting scheme is incorporated alongside the 

standard method within the subsample meta-analysis. This introduces some variations in the 

magnitudes of effect sizes, but the overall interpretation remains largely unchanged. The 

incorporation of the alternative weighting in the meta-regression is not feasible with the Stata 

software. Consequently, only the standard weighting method is applied, with the expectation that this 

limitation does not significantly alter the overall interpretation of the model. Third, publication bias 

can be an issue in meta-analysis. Publication bias results from selective sampling, there are two main 

types of this bias (Beltrán et al. (2018). One type is directional, characterized by selection favoring a 

particular effect, for example, negative or positive. The other is statistical significance, where the 

selection favors results that are statistically significant. In this study, a funnel plot is employed to 

visually examine publication bias. Alongside this, a regression asymmetry test is conducted, revealing 

evidence of publication bias. Daniel et al. (2009) propose that in this context, although publication 

bias may not be entirely absent, it could be confused with observable and unobserved heterogeneity 

among the effect sizes, which is caused by differences between studies. Beltrán et al. (2018) 

discovered publication bias in studies focused on coastal locations but not in those addressing inland 

flooding. Hence, the exclusion of coastal studies from their analysis is replicated in this study as well. 

Fourth, meta-analysis faces criticism for its tendency to incorporate all empirical studies without 

regard for their quality. The quality of the primary studies in this research is likely not an issue, given 

that all studies are drawn from peer-reviewed journals.  

 

In this study, the Boolean search strategy employed by Beltrán et al. (2018) is adopted to retrieve 

relevant studies from standard databases. According to Havránek et al. (2020), it is recommended that 

this step involves the collaboration of two or more researchers who should report a measure of their 

agreement for the relevant literature. However, this was not feasible for this study. This in 

combination with the limited available time for searching and reviewing literature may have led to the 

omission of some relevant studies in this analysis. 
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To ensure accuracy in this process of calculating effect sizes, initial effect sizes have been calculated 

for the studies within the meta-sample of Beltrán et al. (2018), and a comparison has been made to 

verify the consistency of the obtained estimates. The same estimates were successfully retrieved for 

most studies. However, in some studies, models with a spatial lag are employed. Beltrán et al. (2018) 

calculate the total effect for spatial log models following the approach outlined by Golgher and Voss 

(2016). This added complexity to the calculation, which is why only the direct effect is included in 

this study. According to Beltrán et al. (2018), the study outcomes remain largely unaffected, 

irrespective of whether the total or direct effect is considered.  

 

5. CONCLUSION 

 

This paper studies the variation in findings within the literature on the effect of flood risk on housing 

prices through a meta-analysis. Previous meta-analyses on the influence of flood risk on house prices, 

conducted by Daniel et al. (2009) and Beltrán et al. (2018), include studies up until 2013. The 

growing awareness of climate change and its associated impacts underscore the need for a renewed 

meta-analysis that incorporates more recent studies, providing valuable insights into the evolving 

dynamics of the housing market and the influence of environmental factors. The aim of this study is to 

explain variation in estimates found in the literature and to determine the overall effect of flood risk 

on house prices. 

 

The meta-sample in this study comprises a total of 191 estimates obtained from 14 papers published 

after 2013. The price differences for houses located within floodplains, as indicated by these studies, 

exhibit substantial variation, ranging from a discount of 84% to a premium of 41.4%.  On average, 2 

out of the 14 studies identify a premium, while the rest of the sample indicates a discount. Subsample 

meta-analysis indicate a premium of 7.1% for houses in coastal floodplains. Significant differences 

are also found when comparing pre-flood estimates with post-flood estimates. The discount of 4.5% 

before a flood increases to 8.9% after the occurrence of a flood.  

 

A meta-regression analysis is performed to determine the most accurate estimate of the overall impact 

of flood risk on house prices. In the meta-regression, the favored model reveals a -4.7% price 

differential for properties situated in an inland 100-year floodplain. The meta-regression is executed 

with two distinct specifications for the variable representing the time elapsed since the most recent 

flood. This is done to evaluate which specification more effectively captures the diminishing impact 

of the flood risk discount following a flood event. Furthermore, the model is run both with and 

without the inclusion of study fixed effects to address unobserved study heterogeneity. The four 

models consistently indicate a significant price differential ranging from -3.9% to -4.8%.  
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This study has its limitations. Firstly, only 2 out of the 14 studies in the meta-sample were conducted 

outside the United States. This is because the designation of flood zones, indicating the probability, 

originates from the United States and is not universally adopted. To enhance cross-regional 

comparisons, alternative methods for assessing flood risk should be considered. Second, Beltrán et al. 

(2018) assert that studies contributing multiple estimates result in the overrepresentation of specific 

studies. An alternative weighting scheme to address this overrepresentation was not feasible in the 

meta-regression. Exploring the impact of such an alternative weighting on the results could be of 

interest.  

 

The results of this study contribute valuable insights into the relationship between flood risk and its 

impact on the willingness to pay among homebuyers. The capitalization of flood risk into property 

prices is influenced by individuals' subjective assessments, posing significant economic risks. It is 

therefore of great importance to increase awareness of flood risk among people. By doing so, the 

housing market can more effectively incorporate flood risk, ultimately mitigating financial and 

economic risks. 
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APPENDIX A: Forest plot 
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APPENDIX B: Regression table including coastal estimates 
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