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Abstract

The growth of resort tourism in the 20th century has led to the transformation of various rural coastal and

island regions into new specialised built up resort zones. This is typically in destinations fitting the Three S’s

of sun, sea, and sand. One such area where this transformation has been felt acutely is Maspalomas/Playa del

Inglés, located on Gran Canaria’s southern coastline. However the consequences of such development on

regional microclimates is relatively unknown. This article utilises remote sensing data from the LandSat 8

satellite to map the regional distribution of surface temperatures within Maspalomas/Playa del Inglés. In this

way temperature disparities are identified between cooler built up neighbourhoods dense with tourism

related activities, and hotter built up neighbourhoods on the peripheries typically housing local residents

and workers in the tourism sector. To explain why, links are drawn between the Tourism Area Life Cycle

model and the concept of resortification to argue that, across resort regions, landscaping and environmental

amenities are prioritised for touristic spaces over their non-touristic counterparts, thus causing a heat

disparity. This article asserts that this constitutes a spatial injustice, and points to a broader reality of

marginalisation and segregation for residents of resortified regions. To address such injustices, this article

argues that resort areas must establish a Right to the Resort for residents, empowering these communities

with greater democratic say over planning decisions and ensuring better provision of vital neighbourhood

investment.
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1. Introduction
From the mid 20th century onwards, with the growth of the mass tourism model of low costs and high

capacity (Cantillon, 2018; Chong, 2020; Goodwin, 2017; Weaver, 2001), the sector has established itself as

the dominant industry in a host of both urban and rural regions, particularly within hotspots such as the

Mediterranean, the Caribbean, and Maraconesia (Hernández Martín et al., 2021; Kizos et al., 2017; Lagarias &

Stratigea, 2023; Leka et al., 2022; Weaver, 2001). Yet, mass tourism growth has also been linked to harmful

consequences for affected regions, through threatening biodiversity (Hall, 2010), contributing to inflation

(Shaari et al., 2018), and squeezing the local housing markets (Biagi et al., 2015), amongst other impacts.

Furthermore, through establishing a building footprint of hotels, resorts, attractions, and other associated

businesses, mass tourism can cause dramatic landscape transformations through either rapid redevelopment

of existing urban spaces towards centring tourism or the construction of entirely new specialised resort

zones on top of previously rural areas (Blaxell, 2010; Cantillon, 2018; Jauze, 2013). Understanding in detail

the consequences, both positive and negative, of this spatial element to tourism is critical to help the sector

to adapt to growing demands for tougher environmental and social responsibility. Such demands are

particularly acute in areas that have been most affected by mass tourism, with there being growing political

discontent and resistance to the sector (Nixon, 2015; Pettas et al., 2022; Suarez, 2024).

One such consequential impact of tourism development is the effects upon local microclimates. Here

microclimate denotes small scale, human level climatic conditions such as humidity and temperature, in

cities often being shaped by the fabric of local urban features (Erell et al., 2011). Regional climate is

considered a key determinant of destination building, and as such tourism development may be more acute

in regions exhibiting “desirable” year round climates (Scott et al., 2016). However, altering a landscape’s

surface through anthropogenic actions such as building hotels, new housing, attractions, and general

landscaping can distort the local microclimate (Lin et al., 2020; Rizwan et al., 2008). Some of these impacts

may be intentional, particularly as in some destinations without efforts at localised cooling such as planting

street trees for shade, local climates could become excessively hot and thus threaten tourism desirability.

Nonetheless, these impacts could also be unintentional side effects of developing tourism amenities such as

irrigated parks, lakes, and swimming pools, as these features have also been linked to local climate

alternation through spillover cooling effects (Lin et al., 2020; Peña, 2008).



Yet, in tourism dense areas such as resort regions, land value is often tied to tourism desirability (Cantillon,

2018; Liu &Wall, 2009). This means that there is potential for spatial and social segregation (Musterd, 2005)

between the desirable areas allocated for tourists and those left on the peripheries for regional

residents/workers in the sector. These non-touristic neighbourhoods may exhibit different spatial properties

and receive less volumes of development investment. Combined such a situation could cause non-touristic

neighbourhoods to have a less favourable microclimate compared to touristic areas. In this regard tourism

development, particularly in resort regions, could produce concerning environmental disparities. Given a

context of global climate change and rising criticism directed at the sector (Nixon, 2015; Suarez, 2024),

examining if and how tourism can be identified as producing such microclimate inequalities, is thus a salient

and pressing research agenda.

2. Theory and Literature
When analysing tourism development and its environmental impact, it may be important to specify what

type of area is tourism growth occurring. This entails separating tourism growth into a typology of urban and

rural developments, with potentially the most dramatic environmental alterations being in the latter

category whereby tourism can transform sparsely populated rural landscapes into new specialised economic

zones/resort areas. To understand how environmental inequalities can emerge within these resort areas,

this study employs the concept of resortification, which denotes a specific process of landscape

transformation from rural to concentrated tourism development through hotels, amenities, new business etc.

(Blaxell, 2010; Jauze, 2013; Tade, 2004 as cited in Blaxell 2010). As a concept, resortification covers the

particular market pressures, political decisions, destination brand management, and stakeholder influences

that shape this transformation.

A multitude of interrelated factors combine to determine the desirability of a particular rural destination for

resortification, including but not limited to, the aforementioned favourable climates for tourism (Scott et al.,

2016; Szuster et al., 2023), proximity to attractive landscape/coastal features such as sandy beaches

(Cantillon, 2018; Lagarias & Stratigea, 2023), access to transportation links (Lohmann & Duval, 2011;

Prideaux, 2000), availability of affordable land and labour (Andriotis, 2003; Joppe, 2012), encouraging

regional planning agendas (Alvarez León, 2012; Cantillon, 2018), and potentially other clustering incentives

for resorts, such as the Hotelling Model (Rodríguez-Victoria et al., 2017). Emphasising the importance of



climate and location, destinations most favourable for resort development have been thought of as

embodying the “Three S’s of Sun, Sand, and Sea” (Aguiló et al., 2005; Cantillon, 2018; Szuster et al., 2023).

Efforts to model resortification and more general the process of area transformation into tourism

destinations have led to the formation of theoretical frameworks, most notably Butler's Tourism Area Life

Cycle/TALC model (Butler, 1980, 2004).

Figure 1: “A tourism area cycle of evolution” (Butler, 2004)

Although the TALC model has some drawbacks, such as not separating rural and urban tourism development,

relevant for this article is Butler’s identification of a period of rapid growth within tourism area

transformation referred to as the Development Stage (Butler, 1980, 2004). Butler defines this stage as being

often following a top down planning agenda to construct and expand tourism in a given region. For

resortification, it is in this stage where total landscape transformation towards a resort region is felt most

acutely, and where the speed of this development may entail a lack of careful planning due to market

pressures to quickly capitalise upon rising demand from tourists to visit. The speed and totality of this

Development Phase, may partially explain identifiable commonalities between many resort areas globally –

features identified within a subfield of tourism studies termed “Resort Morphology” (Liu &Wall, 2009). For

coastal resorts, these features include tourism businesses clustering near desirable environmental features

such as the beaches or the coastline, forming an area defined as the Recreational Business District or RBD

(Andriotis, 2003; Liu & Wall, 2009). Furthermore, expanding out from the RBD in these coastal resort areas,



due to endless rising tourism demand of the Development Stage, there may be the construction of ever larger

hotels with desirable and distinguishing features such as expansive swimming pools and carefully

maintained surrounding gardens (Butler, 1980).

In the Development Stage intensive landscaping is made possible by rising profits to both to reshape the

resort region into one more visually appealing, and provide new pull factors such as the construction of

attractions such as golf courses. Further for resorts in hot arid regions, such landscaping efforts may also be

directed at cooling the area’s climate into one more hospitable to tourists. In pursuit of this goal resort

planners may incorporate irrigated additional green features (on top of golf courses and hotel lawns) such as

urban parks and trees as methods of cooling resort microclimates (Arshad et al., 2021; Peña, 2008). The

resulting urban cooling effect from green areas is partly attributable to plant life having a higher albedo

compared to artificial surfaces, due to evapotranspiration, where heat energy is absorbed and utilised in the

photosynthesis process (Qiu et al., 2013, 2017). Furthermore, trees, in particular, provide canopies for shade,

further lowering local daytime temperatures (Erell et al., 2011; Gomez-Muñoz et al., 2010).

Another design feature that may have the added effect of cooling is the incorporation of artificial water

features, such as ponds, lakes, or pools, which may absorb heat and, through evaporation, increase local

humidity, which could lead to cooling breezes, however their effectiveness is debatable (Jacobs et al., 2020;

Lin et al., 2020). Additionally, altering the colour of surfaces, notably by painting buildings white, increases

the surface albedo of structures so that they reflect more sunlight than they absorb. Often associated with

traditional architectural styles of the Mediterranean, this style of painted buildings is sometimes referred to

as "Pueblos Blancos”/“White Villages”' in the Andalusia region of Spain (Periáñez, 2017) Finally, designing

lower-density neighbourhoods for resorts allows for air flow, which in turn can also mitigate excess heat.

Combined these interventions could transform more touristic areas of resortified spaces into Urban Heat

Sinks (UHS) whereby these spaces are cooler relative to surrounding areas (Fan et al., 2017; Mohamed et al.,

2018).

However, this process could mean resortification causes urban heat inequality across resortified regions.

This is because, as well as the construction of new hotels and attractions, within the Development Stage of

resortification there is an increase in the demand for a regional workforce to staff new amenities and hotels

(Andriotis, 2003; Cantillon, 2018). This in turn causes a need for neighbourhoods to house workers and a



growing non-tourist resident population. However, given that throughout resortification, land value is tied to

tourism desirability (Andriotis, 2003; Cantillon, 2018), the spaces reserved for residents and non-touristic

neighbourhoods may be an afterthought, pushed to the fringes of a resort region in cramped overcrowded

spaces. Moreover, within these non-touristic spaces there is a lower to non-existent financial incentive for the

same scale of landscaping development and provision of amenities as seen in nearby touristic areas. This

could result in dramatic and visible differences in the built environment between touristic and non-touristic

areas, as well as there being clear segregated dividing lines between neighbourhood types. Furthermore, this

spatial segregation could form the basis for a host of environmental inequalities, such as disparities in urban

cooling, air pollution, green space access etc.

This principle of spatial segregation and environmental marginalisation caused by resortification has been

observed globally, particularly by researchers working within the field of Resort Morphology (Andriotis,

2003; Liu & Wall, 2009). For instance, in the example of resort developments on the Greek island of Crete,

outside of the primary touristic areas, there exists periphery spaces of residences for “locals and the

seasonal immigrant workforce” (Andriotis, 2003, p. 71). These areas have a noticeable lack of infrastructure

investment such that “Roads are very narrow, pavements almost non-existent, and parking spaces scarce

making locals’ life difficult” (Andriotis, 2003, p. 72). In hot regions, such cramped spaces, lacking green

surfaces, can trap heat and cause elevated temperatures (Giridharan et al., 2004; Rizwan et al., 2008).

Compared to the cooling of more touristic areas therefore, this study argues that resident spaces are at

greater risk of exhibiting features typically associated with the contrasting Urban Heat Island (UHI) effect

(Arshad et al., 2021; Equere et al., 2021; Fan et al., 2017; Giridharan et al., 2004; Rizwan et al., 2008, 2008;

Son et al., 2017). This denotes the phenomenon of cities and towns experiencing noticeable rises in

temperatures relative to surrounding areas, tied to the development practices of their urbanisation.

Against a backdrop of global urbanisation and climate change, the UHI effect has been the subject of

extensive contemporary analysis examining the scale of heat islands and the harmful effects they could cause

for city populations (Arshad et al., 2021; Equere et al., 2021; Fan et al., 2017; Lin et al., 2020; Nuruzzaman,

2015). Regarding some key features and considerations, the UHI effect is often most intense during the

evening/night time because urban surfaces absorb heat during the day, which is then released at night when

air temperatures drop relative to surfaces (Rizwan et al., 2008; Sobstyl et al., 2018). Importantly, within



many cities the distribution of urban heat has been identified as mirroring more broader spatial

marginalisation, reflecting the enduring legacy of oppressive planning practices such as redlining (Li et al.,

2022; Wilson, 2020) and slum development (Wang et al., 2019).

Resortification thus may risk causing such disparity in urban temperatures across a resort region,

particularly in hotter and drier destinations that could require significant landscaping investment to be made

hospitable. This is due to the following theorised process: (1) Hot arid coastal areas, despite being conducive

to resort development, require some degree of landscaping to create attractive and comfortable

microclimates for tourists. (2) In the Development stage (Butler, 1980, 2004) of resortification, the

subsequent investment into irrigation, green spaces, and water features may be largely restricted to resort

areas, with the quality and safety of housing for locals and workers being comparatively marginalised and

pushed to the peripheries. (3) The result is a spatial inequality in heat distribution, with touristic areas

exhibiting an urban cooling/UHS and non-touristic areas experiencing a urban heating/UHI effect. An

abstract spatial model of a resort region that has undergone this process looks as follows:

Figure 2 - Spatial Model of Resortified Region and Heat Inequality

Furthermore, in a wider perspective, these hypothesised links between resortification and microclimate

inequality constitutes a potentially important spatial injustice. This is because a sizable disparity in

temperature and any urban cooling effect could cause significant harm for those living in non-touristic areas.

Concerningly, excess urban heat has been linked to increased health risks for urban residents, such as

instances of heatstroke and dehydration (Lee et al., 2017; Milojevic et al., 2011; Taylor et al., 2015). Further



the UHI potentially leads to higher use of air conditioning and water resources during heat waves, putting

strain on local infrastructure (Hartz et al., 2006; Radhi & Sharples, 2013). Additionally, the UHI effect has

been linked to the Urban Pollution Island (UPI) effect, whereby the concentration of harmful air pollutants is

elevated in built up areas (Ulpiani, 2021). Although there is an ongoing debate regarding the direction of

causality between urban heat and urban air pollution, urban heat is thought to contribute to increases in

surface level ozone, with hotter surfaces increasing local ozone generation (Shi et al., 2023; Ulpiani, 2021).

For residents exposed, pollutants such as surface level ozone can cause worsening health outcomes,

increasing the risk of conditions such lung infections and respiratory diseases (Kim et al., 2020). Moreover,

urban heat is associated with greater car usage as opposed to walking (Aboelata & Sodoudi, 2020),

potentially leading to further local air pollution and additional heat from exhausts fumes.

Efforts at mapping heat distribution thus could shed light on the theorised marginalisation of residents

compared to tourists. Microclimate inequality in resort areas could therefore be important evidence of how

resident needs are sidelined by market forces during resortification. Linking this disempowerment to

broader theoretical discussions, heat disparity and microclimate injustice may highlight a diminished Right

to the City afforded to residents of non-touristic areas in resort regions (Harvey, 2012, 2013). In this regard,

the process of resortification can be critiqued overlooking the need for a community voice. Moreover, due to

rising temperatures globally, unequal access to safe and resilient microclimates threatens goals of

sustainability and conflicts with international targets outlined in Sustainable Development Goal 11 (United

Nations, 2018) and commitments detailed in the Sendai Framework for Disaster Risk Reduction (United

Nations, 2015).

3. Research Question
Central to this study therefore is the following research question:

To what extent does resortification cause microclimate injustice between touristic
and non-touristic neighbourhoods?

Hypotheses
To establish causality between the decisions shaping resortification and subsequent localised climate

injustices, this study examines a transitive causal logic involving the distribution of intermediary

environmental variables. Each step of causality is thus framed as a testable hypothesis.



Specifically, this study first examines the influences of coastal proximity, irrigated green spaces, and water

features on cooling an area.

H1: Across a given resort region in a dry arid climate zone, green irrigated spaces, water features such as

swimming pools, and coastal proximity will cause localised decreases in daytime temperatures.

Furthermore, this study will then analyse if these features are higher in frequency within touristic areas, as

opposed to non-touristic areas, interrogating the theorised difference in landscape investment.

H2: Across resort regions, touristic areas will have greater density of green irrigated land, water features

such as swimming pools, and will be closer to the coast.

This study will then examine if there is a subsequent daytime cooling effect experienced by touristic/resort

areas.

H3: Between touristic areas and residential areas, there will be a disparity in distribution of daytime

temperatures, with touristic areas experiencing a greater cooling effect.

Finally, in linking empiricals findings to established theory and literature, this study will examine if the

subsequent climate disparities can be accurately described as an urban injustice, being evident of spatial

segregation and of the inability of residents from exercising the Right to the City.

H4: Climate disparities in a resort area are evident of wider segregation and demonstrate residents' lack of a

Right to the City.

The above logic and hypotheses are an example of the transitive network of causality (Johnson & Ahn, 2015),

with the hypothesised link between resortification and microclimate inequality having identifiable and

measurable intermediaries in the form of the deliberate distribution of environmental features. Focusing on

the intentional placement of green spaces, water features, and the types of neighbourhoods closer to the

coast across resort areas, this study examines the broader consequences of the choices made to benefit the

tourist experience in the region. The hypotheses are formatted to test the impact of these decisions on local

temperatures, comparing areas where such features have been implemented against those without them. By

analysing these disparities, this study aims to demonstrate how the magnitude and distribution of any



artificial oasis effect observed in touristic areas are both determined by the specifics of the resortification

process, rather than being coincidences or correlations. This approach will help us better understand the

causal impact of resort development choices on environmental and social conditions, highlighting the role of

resort planners in creating spatial disparities.

4. Materials and Methods
This study utilises a combination of remote sensing (U.S. Geological Survey, 2023) and crowdsourced

geospatial data (OpenStreetMap contributors, 2024) to empirically examine the validity of Hypotheses 1-3

across a specific resortified area. From these sources, various environmental and spatial features are

determined, such as crucially Land Surface Temperature (LST), Building Concentration, Normalised

Difference Vegetation Index (NDVI), Normalised Difference Water Index (NDWI), Swimming Pool

Concentration, Coastal Proximity and Tourism Industry Concentration. With these metrics various analytical

methods are utilised to test the first three hypotheses.

Overview of Study Area
This article focuses its analysis on a specific resort region on the island of Gran Canaria. As an island Gran

Canaria has a resident population of around 862,893 as of 2023 (Instituto Nacional de Estadística (INE),

2023), a total landmass of around 1,560 km², and is situated at around 28°N, 16°W. This makes Gran Canaria

the second most populated and third largest landmass of the Canary Islands. Following their conquest in the

15th century, the economy of the Canary Islands has changed significantly, from being traditionally

dominated by primary industries such as agriculture and fisheries, to more recently, from the 1960s

onwards, a rapid transformation to mass tourism centred economy (Hernández Martín et al., 2021). Like

many island chains globally, the contemporary Canary Islands is now a hotspot for mass tourism, with

estimates placing the contribution of the tourism industry in the overall GDP of the islands at between 50%

and 80% (Garín-Muñoz, 2006). In terms of numbers, in 2019, around 14 million people visited the Canary

Islands, with around 4 million of these visiting Gran Canaria specifically, making it the second most popular

destination in the Canary Islands after Tenerife (García-Romero et al., 2023). However, this model of mass

tourism is not without growing controversy. In Spring 2024, large protests erupted across Gran Canaria and

the wider archipelago over perceived negative impacts of tourism on local communities (Suarez, 2024).

Notably, tourism was argued to have contributed to driving up the price and accessibility of housing, goods,



services, and critical resources such as water, as well as contributing to environmental harm. This discontent

is with the economic backdrop of the Canary Islands being one of the poorest regions of Spain with an

estimated GDP per capita of €24 000 in 2022 (Eurostat, 2024).

Figure 3 - Protest Signs from Spring Anti-Tourism Protests in Las Palmas de Gran Canaria (Holland 2024)

Furthermore, as a result of the growing dominance of mass tourism, much of the rural and urban landscape

of Gran Canaria has dramatically transformed in the past 60 years, with investors responding to increased

tourism demand by aggressive development of hotels and resorts both in existing urban areas such as Las

Palmas and Agaete, and new custom built resort regions on previously rural areas. Regarding the latter, these

new resortified regions are concentrated in the southern rain shadow coast of the island, being attracted to

the consistent cloud free weather, high temperatures, and a sandy coastline. Thus, the south of Gran Canaria

is an example of the aforementioned “Three Ss” of sun, sand and sea (García-Romero et al., 2023; Szuster et

al., 2023) that make a location conducive to mass tourism and resortification. This rapid tourism driven

development has likely contributed to Gran Canaria having the highest proportion of its landscape classed as

“anthropization” of all the Canary Islands (Ferrer & Quesada, 2024).

This article locates its analysis within the heavily touristic resort combined areas of Playa del Inglés and

Maspalomas, located in the municipality of San Bartolomé de Tirajana, which has a resident population of

54,668 as of 2023 (Instituto Nacional de Estadística (INE), 2023). This region is confined to the north by

Pilancones Natural Park, to the east and south by the Atlantic Ocean, and to the west by igneous breccia from

the island’s volcanic history. The area’s most distinguishing feature is the Maspalomas Dunes, a sandy desert

area and national landmark. The region has a BWh Köppen climate classification (Meteorología (AEMET),

2021), indicating scarce natural water and limited vegetation.



Since the 1960s this area has undergone significant urbanisation away from its traditional use for tomato

cultivation and seasonal habitation by agricultural workers. This was wholly driven by the development of

tourism. Famously, a 1961 urban planning contest named the "International Bid of ideas for Maspalomas

Costa Canaria” led to the adoption of a master plan developed by the French based ATEA and SETAP

consortium (Alvarez León, 2012). This process echoes the Bulter’s TALC model, with the rapid Development

Stage of the region having preceding public-private collaboration and top-down planning agendas (Butler,

1980, 2004). Thus, it can be considered a strong example of a resortified area. In the years since, the urban

landscape of the area has continued to develop, resulting in a reduction of the overall dune area and general

anthropogenic alteration of the remaining natural landscape (Cabrera-Vega et al., 2013).

Regarding the culture and demographics of tourism within Maspalomas and Playa del Inglés, there are

important considerations. For the Canary Islands as a whole, Northern European tourists from countries

such as the UK, the Netherlands, and Germany are the dominant national grouping, with Spanish tourists

only accounting for around 11% of the total (Hernández Martín et al., 2021). These tourist groups have had

a noticeable impact on the built up landscape of resortified areas, with there being a host of businesses such

as German Bars located across the region and many of the street signs and advertisements are trilingual

being in English, Spanish, and German. The prevalence of specifically German tourists has been so intense

and long standing that as early as 1971 a Canary Island satirical magazine published a map with Maspalomas

labelled “Neue Germania” and the rest of the island designated an “Aboriginal Reserve” - an illusion to the

colonial undertones of resort tourism (Domínguez-Mujica et al., 2011).

Notably, there is a prevalence of queer tourism in the region, centred around the Yumbo Centrum shopping

plaza, where there is a cluster of LGBTQ+ bars and businesses (Melián-González et al., 2011; Valcuende et al.,

2023). As a result, the region is renowned as a safe and popular destination for queer tourists globally and

hosts notable events and festivals such as a Winter Pride and a Summer Pride. To illustrate the scale of queer

tourism over 300,000 people attended Summer Pride 2024 (Canarias7, 2024), making it one of the largest in

the European Union. This dimension of queer tourism may be an important ethical dimension to consider as

many tourists visiting the study region may also experience marginalisation in other contexts, and thus may

seek travel as a means for escapism from oppressive structures (Collins, 2015). As a result, research of this

area should take precautions to not contribute to excessive stigmatisation of the tourism community as a



whole, as this may play lip service to negative stereotypes for LGBTQ+ people. One example of such research

is a recent paper that was initially criticised by advocacy groups for its portrayal of gay male tourists in the

region (García-Romero et al., 2022; Marcus, 2021).

Figure 4 – Study Area on 10th May 2023 (ESA, 2024)

Looking at the spatial design of the resort area, closer to the coast and the dunes are located most of the

resorts and estates, in the localities of Meloneras, Playa del Inglés, and Campo International.. These resort

hotels often contain typical features of pools and surrounding irrigated green land. Furthermore, there are

two golf courses situated in proximity to Meloneras, Campo International, and the dune area. On the

outskirts of the resort areas are two periphery localities centred around housing island locals, mirroring the

observations made by resort morphologists (Andriotis, 2003; Cantillon, 2018; Liu & Wall, 2009). These are

El Tablero, situated atop a hilltop in the North West and San Fernando, built along the GC-1 highway. These

areas are designed much more typically for Canary Island townships, featuring tighter streets, less green

spaces, multistorey apartment blocks, and irregular terrace housing.

Data Acquisition and Processing
Across this study area a variety of spatial data was collected to form the basis for empirical modelling. For

data sourced from remote sensing, this study employed the LandSat 8 satellite (U.S. Geological Survey, 2023).

Imagery from LandSat 8 has a resolution of 30m x 30m. The study area comprises around 33,000 such

squares. LandSat 8 was chosen in favour of the higher resolution Sentinel 2 satellite, due to the fact that,



unlike Sentinel 2, LandSat 8 captures Long Range Infrared bands, which is necessary for the calculation of

Land Surface Temperature (LST). The LandSat 8 satellite passes over the study area at around 11:29am, thus

close to midday. To capture a general understanding of environmental variables throughout the year, across

the study area, six cloudfree timestamps spaced roughly 60 days apart throughout 2023 were utilised. This

brought the total amount of data points to 200,000.

NDVI and NDWI
Foremost, for each of these timestamps the distribution of the Normalised Vegetation Difference Index and

the Normalised Water Difference Index was calculated using the following formulae using the LandSat 8

Bands NIR (Near Infrared), SWIR (Short Wave Infrared), Red, and Green (Equere et al., 2021; Sahu, 2014):

The mean results for each timestamp is presented in the table below. Here there is less variation in the year

round changes to monthly mean NDVI versus the NDWI. To this end NDWI appears to follow seasonal trends,

with there being drier surfaces in Summer as opposed to Winter. A potential explanation for the lack of

seasonal changes in NDVI in the Maspalomas/Playa del Inglés region than other locations could be due to the

consistent sun and the potential influence of irrigation of green spaces.

Day Mean NDVI Mean NDWI

5th January 0.11 -0.03

20th March 0.11 -0.06

18th May 0.11 -0.07

24th July 0.11 -0.07

12th September 0.10 -0.04

13th November 0.09 -0.05



Albedo
Again using LandSat 8 data, the surface albedo was determined (Equere et al., 2021). This represents the

reflectivity of a surface, on a scale of 0-1. This denotes the fraction of the light that is reflected, with 1

indicating total reflectance and 0 indicating total absorption. The formula for calculating surface albedo

using LandSat 8 is:

Daylength
For each 6 time stamps, the approximate day length in each period was calculated. This enables the inclusion

of seasonality in the modelling. This was achieved using the “geosphere” package for R (Hijmans, 2021). To

calculate day length, the Solar Declination/tilt of the earth away from the sun was determined using the

following formula:

This was then converted to solar hours and then hours of daylight using the following formulae, where “lat”

represents the local latitude (in this case 27.75 degrees North) :

This resulted in the following output for estimated daylight hours for each timestamp:

Day Hours of Daylight

5th January 10.44
20th March 12.09
18th May 13.56
24th July 13.61
12th September 12.44
13th November 10.86



Land Surface Temperature
Calculating Land Surface Temperatures was slightly more complex than these control variables. Here a

similar process detailed in several prior studies on urban heat and remote sensing was utilised (Arshad et al.,

2021; Equere et al., 2021; Son et al., 2017). Foremost, the values/ in the Long Range Infrared Band of𝐷𝑁

LandSat 8 was converted to Top of Atmosphere Spectral Radiance/ values. This process uses input units𝐿
λ

found in the LandSat 8 metadata/MLT file (U.S. Geological Survey, 2023). These values are the Radiance

Multiplicative Band / (0.00038) and the Radiance Additive Band / (0.1). The formula for this𝑀
𝐿

𝐴
𝐿

conversion was the following:

The second step was to use these values to calculate the Radiance to At-Sensor Temperature/ . This𝐵𝑇

converts the Spectral Radiance into temperature values or Brightness Temperature in Kelvin. This process

requires two constants related to the Long Range Infrared Band’s specific thermal conversion constants,

found again in the metadata file. These are and (799.0284), and (1329.2405).𝐾1 𝐾2

The above metric alone could be used for study of heat distribution, however it does not account for the

variation caused by surface level emissivity. Emissivity denotes how much infrared a surface will absorb or

reflect, often determined by the relative proportion of different surface types such as soil or vegetation. The

relative values of emissivity scale from 0 to 1. NDVI is used to determine emissivity, through the fractional

vegetation factor . This was calculated with the following formula:𝑃
𝑣

From this the surface emissivity is approximated. This uses two constants relating to the relative𝑒λ

emissivity of soil (0.964) and the emissivity of vegetation (0.984), as well as a surface roughnessϵ𝑠λ ϵ𝑣λ

metric (0.005).𝐶λ



Combining these building blocks with the general the wavelength of the emitted radiance for Landsat 8, λ

(0.00000010895), the adjusted LST, is determined using the following formula (converting from Kelvin to𝑇
𝑠

Celcius).

Where is a correction constant incorporating the speed of light , Planck’s constant , and Boltzmann’sρ 𝑐 ℎ

constant .σ

This process was repeated for across the 33,000 squares of the study area for each timestamp. In total, this

means that, for approximately 200,000 30m x 30m squares at a point in time, the surface temperature was

determined. The table below shows the mean value for each timestamp.

Month Mean LST (ºC)

5th January 34.78

20th March 42.89

18th May 46.76

24th July 37.37

12th September 40.29

13th November 34.83

Below is also an example raster of land surface temperature for July 2023:



Figure 5: LST for July 2023

Coastal Distance, Buildings, Tourism, and Swimming Pools
Concurrent to the remote sensing data, OpenStreetMap was employed to extract data regarding spatial and

built up features of the area (OpenStreetMap contributors, 2024). One such example is distance from the

coast in kilometres. Furthermore, the spatial distribution of touristic businesses such as hotels and resorts

was also mapped, as well as the general building footprint of the region.

Figure 6: Distance from Coast in Study Area

To convert the vector data (the tourism points and building footprint) to a 30m x 30m raster grid that aligns

with the LandSat layers, a Gaussian kernel transformation was applied, with a kernel radius of 400 cells. The

result is a heat map of “Building Concentration” and “Tourism Exposure” as scaled variables ranging from -1

upwards.



Figure 7: Tourism Concentration and Building Concentration (Overlaying Building Footprint)

The usage of Building Concentration and the OSM building footprint data (OpenStreetMap contributors,

2024) as opposed to Normalised Difference Built-Up Index (NDBI) is due to the resulting NDBI raster layer

having large swaths of the sand dunes return high values, thus being mistaken for anthropogenic features.

Thus, the NDBI was not used in this study. Whilst there are potentially some drawbacks to this approach,

such as some buildings not being included within OSMs dataset and lack of any temporal changes to building

footprint the data (so construction projects starting in 2023 were potentially omitted), ultimately compared

to NBDI’s weaknesses in a sandy environment, constructing and utilising such a Building Concentration

heatmap was determined to be more accurate.

Finally, due to the 30m x 30m resolution of the LandSat 8 Imagery, many swimming pools might be excluded

from NDWI calculations, although NDWI may still have value for measuring seasonal variation in surface

wetness and features such as lakes or ponds. As a result, as well as NDWI this study also utilised OSM data on

the distribution of swimming pools, again formatted in a similar fashion to Building Concentration and

Tourism Concentration to 30m x 30m a heatmap using a Gaussian kernel of 400 cells.

Elevation
Finally, for elevation, this study employs NASA’s Shuttle Radar Topography Mission data for the area (NASA,

2013). Again this is at a resolution of 30m x 30m squares. Incorporating elevation within studies of urban

heat has some precedence, notably with Equerre et al.'s utilisation of topographic information and Advanced

Neural Networks to construct predictive models of LST across a built up region of the Greater Chicago Metro

Area (2021).



Analytical Modelling
In the formation of inferences from the relationships between the above is variables, as well as testing

Hypotheses 1-3, a variety of statistical approaches were utilised. In this way potential causal links between

key factors such as environmental features such as water, greenery, and coastal proximity and urban heat

across the built up landscapes of Maspalomas/Playa del Inglés was empirically explored using tools such as

linear regression. This thus tests Hypothesis 1. Furthermore, to test if planners deliberately prioritised the

needs and desires of touristic areas and differentiated them from non-touristic areas, means testing between

the distribution of identified cooling environmental features across the area is employed. In this way

Hypothesis 2 is addressed. Finally, combining this analysis into a comprehensive modelling approach, means

testing, linear, and polynomial regression was utilised to examine if there are detectable differences in urban

heat between touristic areas and non-touristic areas. Moreover this more complex modelling was used to

explore if there are differences in the relationship between increased anthropogenic development and the

direction and intensity of changes to local microclimates. Therefore Hypothesis 3 is also empirically tested.

Exploratory Inferences and Testing Hypothesis 1
Foremost, a Pearson Correlation matrix between all variables is considered to examine both the possibilities

of multicollinearity and make initial exploratory inferences. From this, Ordinary Least Squares (OLS) linear

regression model building was employed to examine the validity of H1. This is that environmental features

such as green spaces, inland water, and coastal proximity can cause generalised declines in daytime

temperatures. The resulting formula is for this model is:

Furthermore, for further exploratory purposes, six more similar models are constructed - one for each

monthly timestamp (thus omitting the Daylight variable due to a lack of seasonality). This enabled analysis of

any variation in cooling effect from environmental features across a year. The formlae for these monthly

regression models is a follows:



From analysing the effects of NDVI, NDWI, and Coastal Proximity on temperatures, this validity of H1 can be

interrogated, thus highlighting the relative importance of these anthropogenic and environmental design

features in affecting daytime microclimates.

Testing Hypothesis 2
For analysing H2, means testing was employed. Foremost, the data covering the study area was filtered to

cover a more limited space, specifically where the Building Concentration metric exceeds 0. This restricted

analysis to purely built up areas. This area was then split into two land use types, one where Tourism

Concentration exceeds 0 and the other where Tourism Concentration falls below 0. These represent touristic

and non-touristic areas respectively. Between these two areas, Hypothesis 2 predicts that touristic areas have

greater concentration of environmental cooling features.

To test this, Mann-Whitney U tests were utilised looking at the distribution of mean yearly NDVI, mean yearly

NDWI, Swimming Pool Concentration, and Coastal Proximity between the two area types. This is to examine

if there are statistically significant differences between the two area types. From analysing the results of this

test, inferences can be drawn on the distribution of cooling features between touristic and non-touristic

areas. For touristic areas, statistically significant higher mean values for NDVI, NDWI, and Swimming Pools,

as well as statistically significant lower means values for Coastal Distance, indicate support for H2.

Testing Hypothesis 3
Regarding the third hypothesis, this study used a variety of different statistical methods. The first, similar to

the analysis of H2, entailed splitting the data into two subsets of touristic and non-touristic areas (again

using the Tourism Concentration Value of 0 as the threshold). Between these two subsets, Mann-Whitney U

tests are again utilised to examine the distribution of Land Surface Temperatures. Following this two OLS

regression models were constructed, with Land Surface Temperature as the dependent variable. Crucially,

this is to examine the influence of Building Concentration on Land Surface Temperature between the two

groups. This is because, H3 postulates that there exists a potential artificial oasis/cooling effect caused by

resortification driven building development in the area, however, this effect may be more pronounced in

touristic areas as opposed to non-touristic areas. The formula for these two models is as follows:



By comparing the influence of building concentration on Land Surface temperature between the two models,

inferences can be made concerning any potential differences in urban cooling or heating. However, it may be

that the effect is more complex that linear regression allows analysis. This can be seen in the scatter plot

below looking at mean Land Surface Temperatures and Building Concentration (for Building Concentrations

exceeding 0):

Figure 8: Mean LST throughout 2023

Three initial observations can be made from this graph. (1) There does appear to be some behavioural

differences between touristic areas (in yellow and green) and non-touristic areas (in purple and blue) with

regards to a potential urban cooling effect (2) A general decline in the spread/variability of LST values is

observed as Building Concentration increases. This may be linked to non-built up areas varying considerably,

from the heat of the sandy dunes to cooler elevated land (3) The relationship between Building

Concentration and LST does not appear to be wholly linear. Efforts to address these concerns necessitated a

more complex modelling approach in the form of a Polynomial Interaction Model looking at the relationship

between LST, Building Concentration and Tourism Concentration, as well as other control variables. This

allows for more detailed modelling through the inclusion of a polynomial term, as well as interaction effects

between control variables. This strengthens the model in the face of potential multicollinearity, and

heteroskedasticity which together can weaken more linear modelling. The formula for this comprehensive

modelling approach is as follows:





5. Results
In this results and discussion section, the output from the statistical analysis is presented sequentially, going

from an initial exploration of the relationship between the multitude of variables in this analysis, towards the

comprehensive modelling approaches outlined for testing Hypothesis 3. Following the validity of the

theorised network of causality, the three empirical hypotheses are thus examined sequentially.

Exploratory Inferences and Regression Matrix

Figure 9 - Pearson’s Regression Matrix

Looking at the above regression matrix, several initial exploratory inferences can be made. These represent

approximations of the relationships between the spatial features of the study area. For instance, there is a

strong correlation between Tourism Concentration and Building Concentration, with the two producing a

bivariate regression coefficient of 0.73. This suggests that a significant portion of the built-up area can be

associated with tourism activities. Looking at the influence of spatial features on surface temperatures, NDVI,

NDWI, and Swimming pools all have some degree of negative relationship with LST, as well as Coastal

Distance having a weak positive relationship with LST. This gives some initial support to Hypothesis One.

Also, the effect of Daylight Hours has a fairly strong positive relationship with LST. This indicates that

seasonality does influence temperatures. Tourism Concentration and Building Concentration both have

positive relationships with NDVI and NDWI. This indicates that these environmental features may be the

result of deliberate landscaping and planning decisions in the region, and not naturally occuring, this could

give some initial support to Hypothesis 2. Finally, Tourism Concentration and Building Concentration also



have negative relationships with LST. This suggests some initial support for the urban cooling effect and

Hypothesis 3.

Effect of Environmental Cooling Features
Year Round

LST
January
LST

March
LST

May
LST

July
LST

September
LST

November
LST

(Intercept) 11.004*** 34.071*** 41.196*** 45.197*** 35.981*** 37.530*** 31.827***

(0.089) (0.062) (0.086) (0.099) (0.086) (0.103) (0.082)
Albedo 0.000*** 0.000** 0.000*** 0.000*** 0.000*** 0.000*** 0.000***

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
NDVI −6.395*** −3.618*** −8.409*** −10.099*** −9.883*** −5.962*** −7.107***

(0.106) (0.081) (0.110) (0.124) (0.110) (0.135) (0.109)
NDWI −15.154*** −13.190*** −16.252*** −15.230*** −11.025*** −8.705*** −16.225***

(0.153) (0.122) (0.160) (0.182) (0.162) (0.195) (0.148)
Swimming Pools −0.546*** −0.604*** −0.713*** −0.493*** −0.509*** −0.310*** −0.742***

(0.009) (0.006) (0.010) (0.012) (0.010) (0.011) (0.009)
Coastal Distance 0.563*** 0.294*** 0.409*** 0.606*** 0.522*** 0.806*** 0.817***

(0.012) (0.008) (0.013) (0.014) (0.012) (0.014) (0.011)
Elevation −0.001*** 0.001*** −0.002*** −0.009*** −0.008*** 0.007*** 0.002***

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Daylight 2.206***

(0.011)

Num.Obs. 198516 33086 33086 33086 33086 33086 33086
R2 0.456 0.570 0.520 0.450 0.445 0.400 0.650
R2 Adj. 0.456 0.569 0.520 0.449 0.445 0.400 0.650
AIC 1070974.1 94166.5 126133.1 131991.5 124041.2 130255.9 116795.4
BIC 1071065.9 94233.7 126200.3 132058.7 124108.5 130323.1 116862.7
Log.Lik. −535478.056 −47075.241 −63058.533 −65987.744 −62012.603 −65119.929 −58389.711
RMSE 3.59 1.00 1.63 1.78 1.58 1.73 1.41

Looking at the results from the above regression table and several inferences relating to the validity of

Hypothesis 1 are possible. NDVI, NDWI, and Swimming Pool Concentration all have statistically significant

year round negative effects on LST. Examining the magnitude of these effects and they appear quite

dramatic. However, this is due to the scaled nature of NDVI and NDWI values which range between -1 and 1.

This means that a 0.1 point rise in NDVI would correlate to a year round difference of approximately -0.64ºC

in Land Surface Temperature. These cooling effects substantiate the validity of Hypothesis 1.

Furthermore, Coastal Distance has a positive effect on LST. This therefore indicates that the further a location

is from the coast, the hotter the resulting temperatures. This also supports Hypothesis 1, with a year-round

relationship of every one kilometre distance from the coast leading to around 0.57ºC temperature rise. The

strength of this effect varies throughout the year. The least dramatic relationship is January and the most is in

November. Finally, looking at the influence of seasonality, one hour extra of daylight seems to cause around a

2.2ºC rise in surface temperatures across the region. Taken together, these results support the position of

Hypothesis 1 and therefore the null hypothesis that environmental features don't affect land surface

temperatures can be rejected.



Differences in Environmental Cooling Features
Variable Mean Touristic Mean Non-Touristic Mann-Whitney U p-value

NDVI 0.129 0.085 < 0.001
NDWI -0.025 -0.054 < 0.001
Pool Concentration 1.274 -0.201 < 0.001
Coastal Distance 1.284 2.264 < 0.001

Examining the above results of hypothesis testing on the distributions of NDVI, NDWI, Pool Concentration,

and Coastal Distance, there are some key inferences to be drawn that relate Hypothesis 2. Foremost, Touristic

Built-Up Areas have statistically significant higher average levels of vegetation, surface water, and

concentration of swimming pool. Given that these were identified as cooling features in the above analysis,

this finding supports the hypothesis that, in terms of landscape cooling investment, there is greater

allocation for touristic areas within a resort region as compared to their non-touristic counterparts.

Furthermore, touristic areas have a statistically significant lower mean coastal distance than non-touristic

areas - the mean proximity to the coast for touristic areas is about one kilometre closer than non-touristic

areas. This finding also supports Hypothesis 2 and this study’s abstract spatial model of resortification

(Figure 2.2), whereby touristic areas cluster and outcompete non-touristic areas for coastal proximity. This

also mirrors the observations made by several key resort morphologists. All in all therefore,, by examining

the distribution of these key environmental features, support can be given for the position of Hypothesis 2.

Therefore, the null hypothesis that there is no significant difference in the distribution of identified cooling

features between touristic and non-touristic areas can be rejected.



Differences in Heat Distribution

Land Use and Surface Temperatures
Variable Mean Touristic Mean Non-Touristic Mann-Whitney U p-value

Land Surface Temperature 38.15ºC 39.88ºC < 0.001

As an initial analytical step, the results of the above Mann-Whitney U test comparing the distributions of

surface temperatures between Touristic and Non-Touristic built-up areas can be said to support Hypothesis

3. On average Touristic Areas are around 1.75ºC cooler compared to Non-Touristic areas when it comes to

surface temperatures. This difference is statistically significant. This finding suggests that any urban cooling

effects caused by resortification in dry arid regions are felt more acutely in touristic areas than non-touristic

areas, potentially forming the basis of a noteworthy environmental inequality.

Land Use Linear Regression Results
Touristic LST Non-Touristic LST

(Intercept) 7.870*** 9.305***
(0.172) (0.282)

Building Concentration −0.391*** −0.519***
(0.038) (0.042)

Albedo 0.000*** 0.000***
(0.000) (0.000)

NDVI −7.365*** −3.535***
(0.191) (0.509)

NDWI −9.885*** −6.908***
(0.252) (0.482)

Coastal Distance 0.674*** −0.186***
(0.021) (0.052)

Elevation 0.011*** 0.006***
(0.002) (0.002)

Pool Concentration −0.156*** −0.591***
(0.031) (0.054)

Daylight 2.536*** 2.752***
(0.020) (0.034)

Num.Obs. 60294 24120
R2 0.457 0.450
R2 Adj. 0.457 0.450
AIC 322581.4 127839.8
BIC 322671.4 127920.7
Log.Lik. −161280.690 −63909.908
RMSE 3.51 3.42

Looking at the results of Linear Regression analysis of two models - one based on toursitic built up areas and

one based on non-touristic built up areas, there are some notable differences. Foremost, non-touristic areas

have a higher intercept than touristic, indicating that the baseline temperature difference is around 2ºC. That

being said, in non-touristic areas, there appears to be a more dramatic negative relationship between

building concentration and the cooling of surface temperatures, indicated by a steeper slope for the effect of



building concentration upon land surface temperatures within non-touristic areas compared to touristic

areas. This seems to partially challenge the hypothesis that the urban cooling effect is more pronounced in

tourist areas as opposed to non-touristic areas. However, looking closer at the results of the two regression

models, we can see that the combined effects of NDVI and NDWI appears to cause more significant cooling in

touristic areas than in non-touristic areas. This suggests that the integration of greenery and water features

may be more effective in touristic areas. Interestingly however, ,the concentration of pools seems to have a

more impactful effect in non-touristic areas.

Furthermore, the effects of coastal distance seem to be negative in non-touristic areas and positive in

touristic areas. This positive relationship in tourist areas suggests that those areas closer to the ocean

experience a cooling effect. However, for non-touristic areas, the negative effect suggests that the relationship

is inverse, with areas closer to the coast being hotter. Potentially, this is due to spatial features such as the

GC-1 highway, which for residential neighbours such as San Fernado represents a southern boundary line

and therefore the closest point to the coast. The elevated temperatures from anthropogenic boundary

features like highways (Fan et al., 2017) could be contributing to this reversed direction, similarly so could

elevation. Nonetheless, looking at the results from regression analysis for Hypothesis 1, the general overall

regional effect of coastal proximity is negative on surface temperatures.

To visualise the implications of these models a predictive graph of these can be made of the two models. This

is achieved by holding all other variables at their mean values, creating a theoretical dataset where building

concentration increases sequentially from 0 to 3, and running this data through the model parameters. This

produces the following graph, in which the higher initial position yet a slightly more dramatic slope for

non-touristic areas as opposed to touristic areas can be seen. These models thus add some nuances to

validity of Hypothesis 3 and, alone, cannot be used to reject the null hypothesis that there is no difference in

urban cooling between area types.



Figure 10: Comparative Linear Regression Predictive Graphs.

Taken together, the findings from this linear regression analysis (which looks purely at built-up areas)

illustrate a relationship that is more complex than prior analysis suggested. Based on this analysis alone,

therefore the null hypothesis, that is that touristic areas do not experience a more intense urban cooling

effect than non-touristic areas, cannot be rejected. However, looking at the initial regression matrix, it's likely

that within these models there is a considerable degree of multicollinearity, which could affect the validity of

the results and any subsequent causal inferences. Yet, as shown by the R2 values, both models do account for

more than 45% of the variance in land surface temperatures within their respective regions, so these models

should not be easily dismissed. Nonetheless, potentially a more comprehensive modelling approach is

needed to fully understand the relationships between the spatial distribution of the tourism industry, the

concentration of buildings, environmental features, and surface temperatures within this study region.

Furthermore, as mentioned in the Method’s section, it is possible that the relationship between buildings and

surface temperatures may not be linear. Therefore, a more complex models could be required to fully

interrogate Hypothesis 3



Combined Polynomial Regression Results
Year Round LST

(Intercept) 10.896***
(0.094)

Building Concentration −1.219***
(0.155)

I(Building Concentration2) −0.118***
(0.021)

Tourism Concentration −1.632***
(0.150)

I(Tourism Concentration2) −0.034
(0.026)

Albedo 0.000***
(0.000)

NDVI −6.401***
(0.116)

NDWI −13.912***
(0.159)

CoastDistance 0.534***
(0.016)

Elevation 0.006***
(0.001)

Daylight 2.233***
(0.011)

PoolConcentration −0.519***
(0.045)

Building Concentration × Tourism Concentration −0.373***
(0.051)

Building Concentration × Albedo 0.000***
(0.000)

Building Concentration × NDVI 1.544***
(0.232)

Building Concentration × NDWI 7.474***
(0.234)

Building Concentration × Elevation 0.006***
(0.001)

Building Concentration × CoastDistance −1.059***
(0.035)

Building Concentration × Daylight 0.369***
(0.017)

Building Concentration × PoolConcentration −0.141**
(0.047)

Tourism Concentration × Albedo 0.000***
(0.000)

Tourism Concentration × NDVI −1.364***
(0.220)

Tourism Concentration × NDWI −2.174***
(0.223)

Tourism Concentration × Elevation 0.013***
(0.001)

Tourism Concentration × CoastDistance 0.732***
(0.027)

Tourism Concentration × Daylight −0.040*
(0.017)

Tourism Concentration × PoolConcentration 0.499***
(0.036)

Num.Obs. 198516
R2 0.467
R2 Adj. 0.467
AIC 1066922.0
+ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001

The above regression table provides the results of this study's attempt to produce a more comprehensive

approach across nearly 200,000 observations. This model examines the interactions between building

concentration, the concentration of the tourism industry, environmental features that could influence urban

cooling, and the interaction between the tourism industry and building concentration. Furthermore, this

model incorporates polynomial terms to examine if the relationship between key predictor variables of



Tourism Concentration, Building Concentration, and the response variable of Land Surface Temperature is

nonlinear. Examining the fit of the model, it accounts for between 46% and 47% of the variation in LST

across the study area for 2023.

Looking at the coefficients from the model, building concentration overall has a statistically significant net

negative effect on land surface temperature. The coefficient for the polynomial term of building

concentration is also statistically significant, indicating that the relationship is not linear. The relationship

between the concentration of the tourism industry and land surface temperature is also significant and

negative . However, the coefficient for the polynomial term of tourism concentration is not significant, which

indicates perhaps the relationship between the tourism industry’s spatial distribution and urban

temperatures is more linear than the overall impact of development. Additionally, multiplying building

concentration with the concentration of the tourism industry in an interaction term produces a statistically

significant negative coefficient, This indicates a stacking effect between tourism concentration and building

concentration, wherein a densely built-up area that is also a tourist area will have a multiplicative effect on

lowering surface temperatures, resulting in an bonus cooling/oasis effect. This may overall cause touristic

areas to cool more substantially than non-touristic areas as building concentration increases.

Furthermore, the interaction effects between building concentration and vegetation and water are

statistically significant positive correlations, whereas, in the interactions with tourism concentration, the

relationship is significant and negative. This supports the inference from the prior regression model that the

cooling effects of vegetation and water are more pronounced in tourism areas. In non-touristic areas, the

presence of vegetation and water does not seem to provide the same cooling effect. This suggests important

morphological differences in the way in which vegetation and water features are integrated and utilised into

tourist and non-touristic areas. Additionally, there is again a difference in the effect of coastal distance. This is

between the negative direction of coastal distance overall when interacting with building concentration

versus the positive direction of coastal distance when interacting with tourism concentration, plus the

standalone effect of coastal distance also being positive (similarly to the initial regression modelling).

To visualise the predicted relationship between tourism, buildings, and temperatures, predictive graphing

can again be made of this more comprehensive model. This is between theoretical areas of low tourism (-0.5



Tourism Concentration ) and high tourism (a value of 2 Tourism Concentration) This produces the following

graphs.

Figure 11: Polynomial Regression Predictive Graphing

From analysing these graphs, it appears that, when controlling and interacting with environmental variables,

there seems to be no conclusive urban cooling effect for residential non-touristic areas in this study location.

In contrast, for touristic areas, there does seem to be a strong urban cooling effect as the area is developed

from an arid desert landscape. Thus, this more complicated model does support Hypothesis 3. Furthermore,

when examining the interactions between tourism concentration and key environmental cooling, the effects

of these key features are amplified in touristic areas. This suggests a difference in design philosophy, with



touristic areas having more quality-controlled microclimates. Nonetheless, there are some caveats to these

conclusions. Notably, the model accounts for just under half of the variation in land surface temperatures

across the year. This implies that other factors could be important or that the resolution (30m x 30m) of this

analysis might be too abstract to fully understand some of the more micro influences on land surface

temperature.

Establishing Causality
Looking at these empirical results and how they can shed light upon the relationship between the tourism

industry and subsequent uneven microclimates across a given resortified region, there is an inequality

between tourist areas and non-touristic areas regarding year-round surface temperatures. However,

concluding that the tourism industry alone causes an extra urban cooling/oasis effect may be an

oversimplification, as there are likely intermediary factors.

Thus, when examining the distribution of environmental features across this specific arid resortified area,

there are higher levels of vegetation, surface water, and swimming pools, within touristic areas. Furthermore

touristic areas are typically closer to the coast. These features are all identified in modelling as having a

year-round cooling effect upon land surface temperatures - a finding that is replicated in other studies

analysing urban heat. These features being more common in touristic areas may be evidence of greater

investment in landscaping within touristic areas and the prioritisation of tourism development in more

desirable locations. Interestingly, the more complex modelling suggests that the cooling effect itself of these

features is more pronounced in touristic areas relative to non-touristic, suggesting further disparity in the

quality and implementation of cooling features. Together, these disparities cause touristic areas to have

additional cooling compared to surrounding neighbourhoods. Thus, when comparing touristic areas to

non-touristic areas there is a clear disparity in microclimate comfort and urban cooling. This chain of

causality mirrors the hypothesised links in the study's conceptual model. Therefore, the study concludes that

across this specific resortified area of Maspalomas/Playa del Inglés, there is empirical evidence to support

the claim that the outcomes of resortification cause detectable year round climate disparities between

touristic and non-touristic areas. As a chain of causality, this model looks as follows:



Figure 12: Network of Transitive Causality.

6. Discussion and Conclusion
To answer this article’s research question, the identified causal network between resortification and urban

heat disparities shows that there is at least a resortification-driven microclimate difference between touristic

and non-touristic areas in Maspalomas/Playa del Inglés. However, concluding that this constitutes an

injustice requires a broader theoretical discussion. In this way, Hypothesis 4 can be addressed. To this end,

the empirical results from testing Hypotheses 1 to 3 are contextualised within a broader discussion of how

they indicate segregation and harm attributed to resortification and microclimate disparity. This discussion

is followed by an assessment of the Right to the City afforded to residents of non-touristic peripheral areas of

resort regions, making the case that various political and institutional forms may be necessary to address

potential grievances. Finally, following this analysis, the potential shortcomings of this article's methodology

are identified, and avenues for future research are explored.

Resort Segregation
A key consideration that could indicate that this microclimate inequality constitutes an injustice is that it is evident

of broader segregation across the resort area. In this context, social segregation between tourists and non-tourists is

conceptualised as “the spatial separation of the population according to their social or socio-economic position”



(Musterd, 2005, p. 333). In the book "Resort Spatiality" Cantillon explores spatial consequences of resortification

through an in-depth comparative qualitative analysis of several resort towns globally, including Cancun, Ibiza, and

Miami (2018). Within these settings Cantillon examines spatial tensions that exist between locals and tourists.

Drawing attention to significant discrepancies in land use between tourists and locals, it suggested that locals suffer

a form of ghettoisation or segregation in many resort areas. This contributes to tourist areas being better maintained

and having more greenery, conclusions that are echoed by this article’s findings. Furthermore in some cases, resorts

are constructed in a manner that makes them difficult for locals to navigate and access (through the implementation

of physical barriers such as walled neighbourhoods). As one extreme example, in Cancun, the development of

segregated shanty towns for locals or colonias on the periphery for residents/workers, was deliberately hidden by

intentional landscaping from the beginning of the resortification process and carried on throughout the

Development Phase of the resort region (Azcárate, 2011; Cantillon, 2018; Castellanos, 2010).

Linking the results from empirical testing of Hypotheses 1-3 to Cantillon’s observations, the

Maspalomas/Playa del Inglés region may be described as exhibiting similar properties of segregation and

spatial marginalisation as other resort regions. Specifically, the clustering of touristic neighbourhoods in

more desirable areas and the evidence of increased urban cooling for touristic developments suggest that,

across this study area, the location of non-touristic neighbourhoods such as El Tablero and San Fernando are

spatially sidelined and hidden in the margins, lacking access to key amenities and landscaping investment.

This outcome of spatial separation could be argued to be a deliberate and almost unavoidable feature of

resortification due to a planning agenda prioritising resort tourism. Emphasising the notion that locals and

their living conditions are hidden from resorts, Cantillon explains that for tourists, a desirable resort exists

“outside of the routines and responsibilities that dominate their everyday lives'' (2018, p. 90). In this regard,

the spatial segregation of workers or locals to be out-of-sight and out-of-mind is to save visiting tourists from

witnessing the class realities of resortified regions - resort segregation is not a mistake but a feature.

However, there are some potential critiques of this conclusion of segregation and marginalisation in

specifically Maspalomas/Playa del Inglés. Due to working in the hotel areas throughout the day, many locals

are exposed to and could be said to benefit from the cooling effect of touristic areas. Furthermore, since the

passing of Spain’s Ley 22/1988 de Costas, national regulations dictate that coastal features such as beaches

cannot be privately owned (España, 1988), meaning locals can legally access at least some of the amenities of

touristic areas even if they cannot afford housing close to them. Indeed, compared to more rigid examples of



resort segregation from less regulated regions, across Maspalomas/Playa del Inglés, the physical, social, and

financial barriers between touristic and non-touristic space may be more porous. The notion of more subtle

spatial marginalisation may explain why, in her interviews, Cantillon reports a sizable degree of apathy from

locals towards the tourism sector, with the sector often portrayed by residents as “a necessary evil” (2018,

pp. 174–177).

Microclimate Disparities as an Injustice
Yet, emphasising recent population discontent around the tourism sector on the Canary Islands (Suarez,

2024), it seems unrealistic to argue that similar ambivalence is the consensus amongst Canarian locals

exposed to resortification in the archipelago. Moreover, the concept of the barriers between touristic and

non-touristic areas being porous could even exacerbate these negative sentiments through spatial

comparisons of social welfare, purchasing power, and living standards. Within resorts, workers are

constantly exposed to tourists that are seemingly exempt from labour, thus allowed to spend the days

enjoying themselves in comfortable resorts with hospitable microclimates. At the extreme end of the

comparative spectrum, this could echo Veblen’s Theory of the Leisure Class, whereby workers in some resort

regions are in close proximity to a rotating population of elites engaging in what Veblen describes as

“conspicuous” leisure and consumption (Veblen, 2017). That being said this is potentially not the case in

Maspalomas/Playa del Inglés due to the tourism demographic within this region often being from arguably

marginalised backgrounds. Nonetheless, exposure to inequality, coupled with the physicality of the unequal

distribution of important quality of life-enhancing features (including the disparity in climate comfort), may

mean that even if residents in more non-touristic neighbourhoods are supported economically by the

tourism sector, their relative status as less fortunate is ever present. This can negatively impact local

population's mental wellbeing, and, within the Canary Islands, contribute to the aforementioned political

tension between the tourism industry and locals.

In addition to the political and psychological impacts caused by comparative differences, it is pertinent to

emphasise that the identified resortification-driven microclimate disparity can cause physical health

inequalities in the study region. This is because hotter areas and hotter microclimates negatively impact the

health outcomes of the residents living within them. This can manifest in a broad range of direct health risks,

such as elevated cases of heat stroke, heat exhaustion, and stress. Given that heat and heat waves are



considered “by far the largest cause of mortality related to extreme weather events” (Achebak et al., 2024, p.

1) in high income hot countries such as spain., these concerns are quite pertinent for policymakers to

consider. Even without a heat wave event, across the study area where non-touristic built-up areas were

found to routinely reach excessively high surface temperatures upwards of 40ºC. Furthermore, due to the

links between pollution and urban heat (Ulpiani, 2021), common dangerous air pollutants, such as

surface-level ozone, may cluster in hot urban areas. This could further worsen health outcomes, such as lung

disease and bronchitis.

To summarise, the empirical results from this article can be used to criticise the development practices of

resortification. Relevant to Hypothesis 4, the results suggest that across the study area there is identifiable

segregation between touristic and non-touristic areas. This segregation aligns with the theorised spatial

model of a resortified region. Furthermore, resort segregation may drive environmental disparities between

areas, specifically in this case the differences in urban heat. This may also be evidence of the spatial

marginalisation of non-touristic groups, such as workers in the tourism industry and their families. Such

marginalisation could be contributing to the growing dissatisfaction with the mass tourism model in the

Canary Islands. Moreoveover this marginalisation could cause harm through both the stress of exposure to

comparative differences in living standards and negative health consequences of high microclimate

temperatures. These harms mean that, in the case of Maspalomas/Playa del Inglés, urban heat disparities can

be conceptualised as a microclimate injustice.

Right to the Resort
However, the injustices resulting from resortification and microclimate disparity may also be evidence of a

violation of locals' right to determine the functioning of the city in which they live. Famously, the geographer

David Harvey labels this right as the Right to the City ((Harvey, 2012, 2013). Harvey asserts that residents

deserve a say in the shaping and development of their urban surroundings. However, resortification may be a

textbook example of a region ignoring the needs and desires of its resident population in favour of market

forces and ever-increasing returns on investment. In resort regions, the dominant capital power of the

tourism industry likely sidelines the needs of the resident population, keeping them in a low socio-economic

status and a position of marginalisation.



A critique of this case is that residents of a resort region shouldn't expect anything different from their

current status. If they have moved to an area seeking work in the hotel and tourism industry, they therefore

consented to living in a resortified region, despite its potentially negative and marginalising aspects. This

criticism thus asserts that locals cannot effectively exercise a legitimate right to push back against the

tourism industry. However, this may be a flawed and counterproductive point when considering that often

workers in the industry are migrant labourers or individuals with limited economic options (Andriotis, 2003;

Castellanos, 2010), thus they are disempowered in the face of capital forces, meaning that they may have no

other viable choices than work in tourism. This position means they lack economic power and thus are

stripped of the voice to determine their spatial surroundings and pushed into potentially less hospitable

periphery neighbourhoods and living conditions.

In the current context of global climate change and rising discontent against the mass tourism industry, this

lack of empowerment for tourism workers and their spatial marginalisation, evidenced by their

neighbourhoods not benefiting from urban cooling, underscores a need for urgent reform. It is crucial to

empower the resident population with democratic decision-making over the development of resortified

regions. Adapted from Harvey (2012, 2013), this article terms this concept the Right to the Resort. Referring

back to the context of Masplomas/Playa del Inglés, establishing this right is especially pertinent for the

Canary Islands, as various climate models have noted that areas such as the south of Gran Canaria may

become too hot for tourism to function effectively (Carrillo et al., 2022). On a micro level, this will likely affect

neighbourhoods such as El Tablero and San Fernando more severely than resort regions due to their lack of

cooling techniques. Empowering these neighbourhoods and investing in them now to build microclimate

resilience is essential. Potential avenues to achieve include mandating that resort developers set aside land

for subsidised housing for workers in the tourism industry, affording them similar amenities as those

provided to tourists, as well as implementing a tourism tax to fund resilience building and equitable

development across the region.

Concluding Remarks
This article contributes to the ongoing discussions and debates surrounding the benefits and challenges of

tourism and resort development, both locally in the Canary Islands and globally. By employing quantitative

spatial methods, it demonstrates a clear microclimate inequality within a given resort region. Furthermore,



this methodology can be replicated in other similar resort areas with freely accessible data (NASA, 2013;

OpenStreetMap contributors, 2024; U.S. Geological Survey, 2023), provided there are enough cloud-free days.

In addressing the research question, across the Maspalomas/Playa del Inglés resort region of Gran Canaria,

touristic areas are generally cooler and benefit more from anthropogenic cooling efforts than non-touristic

areas. Consequently, these touristic zones are more resilient to climate change. Various modelling techniques

applied within a theorised transitive model of causality indicate that microclimate disparity results from

resortification, especially during the Development Phase (Butler, 1980, 2004) of the region's transformation

into a resort area. Temperature disparities are linked to the unequal distribution of key spatial cooling

features such as greenery, swimming pools, and coastal proximity. Moreover, these temperature disparities

constitute a spatial injustice, given the health risks posed by excess heat and the mental strain from continual

exposure to the comparative differences between touristic and non-touristic areas.

This injustice suggests a broader spatial segregation and marginalisation of residents in non-touristic areas,

who are often workers in the tourism industry and their families. A significant aspect of this marginalisation

is the disempowerment of residents in shaping the development of their urban space may be a fundamental

feature of resortification, which prioritises market demands for desirable land and tourism development.

This also pushes residents to the peripheries away from attractive features such as beaches. To address this

marginalisation, this article advocates for the establishment of a Right to the Resort for residents. Such a

right would grant them democratic control over future resort development. Additionally, it calls for increased

investment in non-touristic neighbourhoods to enhance their climate resilience amidst rising temperatures

in regions like southern Gran Canaria.

Regarding potential limitations of this article's methodology, there are notable shortcomings to consider.

Primarily, to triangulate conclusions about injustice and marginalisation, it may be important to integrate

qualitative research into the study, forming a mixed-methods approach. Such qualitative methods could be

invaluable in fully contextualising the phenomena of environmental inequality and microclimate disparities,

thereby strengthening the argument that they constitute an injustice. Cantillon's research, which utilised

qualitative methods (though not specifically on climate differences across a resort region), found a certain

level of ambivalence from locals towards the harms caused by tourism development (2018). If a similar

apathy were detected in Maspalomas/Playa del Inglés, it could weaken claims of disempowerment.



Moreover, even if a Right to the Resort were established, apathy could cause residents to be reluctant to

exercise it, viewing the harms of resortification as necessary compromises.

Additionally, the methodology's key response variable of surface temperature might not fully represent

urban heat distribution. Other studies employ field work derived atmospheric readings to gauge air

temperature, which, although linked to surface temperature, could more accurately reflect the harmful

effects of uneven heat distribution. Thus, incorporating air temperature measurements into quantitative

modelling might be a more valuable approach. Furthermore, the use of LandSat 8 data, with its resolution of

30m x 30m, might be too broad to capture finer landscape details and their impact on microclimate

temperature. For this reason, this article utilised crowdsourced workarounds such as swimming pool

distribution. An alternative datasource could be the Sentinel 2 satellite with its resolution of 10m x 10m

(ESA, 2024). However, it lacks the necessary bands for surface temperature calculations. Some studies have

attempted to align Sentinel 2 spatial data with equivalent LandSat 8 layers, laying the groundwork for

predictive upscaling of LandSat 8 derived metrics such as temperature, however these approaches may lack

utility for subsequent modelling as the resulting 10m x 10m temperature layer is ultimately a estimation.

Addressing these limitations could form the basis for future studies on the relationship between

resortification and microclimate injustices. Integrating interviews and adopting a comparative perspective

across different resort areas in various climate zones may provide more concrete and relevant insights into

the consequences of resortification. Additionally, combining on-the-ground sensing tools with remote

sensing satellite data could enhance the accuracy and relevance of microclimate measurements. Advances in

modelling, such as using neural networks to examine the relative importance of various spatial variables on

urban microclimates, could further interrogate the validity of the transitive model of causality presented in

this article. This approach could compensate for potential statistical limitations caused by multicollinearity

and non-normality within the datasets. Lastly, a temporal study using historical data from remote sensing

sources could offer valuable insights into the Development Phase (Butler, 1980, 2004) within resort regions,

enabling the tracking of potential spatial segregation and subsequent environmental injustices.
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Appendix

RMarkdown
In this appendix section is a comprehensive overview of the raw R code employed for the empirical

modelling and graphing used for this article. By presenting the code in its entirety, the transparency and

reproducibility of the research is upheld. It is hoped that this will be particularly useful for researchers and

practitioners interested in replicating the methodology or applying similar techniques to other resort

regions.

Remote Sensing and LST - Example Month July 2023

# Introduction

Here the LST and NDVI from LandSat 8 at 30m resolution is calculated for July

2023.

```{r, message=FALSE}

# load packages

library(tidyverse)

library(terra)

library(RColorBrewer)

library(sf)

library(leaflet)

library(osmdata)

```

## Loading Rasters

These rasters denote different bands of EM radiation captured by the LandSat 8

satellite over the south of Gran Canaria at 11:29am on the 24th July 2023. These

bands cover most of the visible light spectrum as well as the infrared spectrum.

Combined in various was they can be used to calculate various measures such as the

NDVI (normalised difference vegetation index) and the LST (land surface

temperature).

First lets plot and load the rasters

```{r}

# function to plot raster with a label and custome colour scale

plot_rast = function(raster, label, colors) {

terra::plot(raster, col=colorRampPalette(colors)(100))

mtext(text=label, side=3, line=2)

}



# define the bounding box epsg:4083

bbox = ext(c(437292.6282,445376.8775,3067829.6809,3072637.1023))

# load each raster, crop to bounding box, and plot with label

b2 = crop(rast("landsat_july/B2.TIF"), bbox)

b3 = crop(rast("landsat_july/B3.TIF"), bbox)

b4 = crop(rast("landsat_july/B4.TIF"), bbox)

b5 = crop(rast("landsat_july/B5.TIF"), bbox)

b6 = crop(rast("landsat_july/B6.TIF"), bbox)

b7 = crop(rast("landsat_july/B7.TIF"), bbox)

b10 = crop(rast("landsat_july/B10.TIF"), bbox)

```

## Loading Coast Shapefile

Using OSM Data to first extract a coastline of the island

```{r, warning=FALSE}

# query osm

gran_canaria_query = opq(bbox = "Gran Canaria") %>%

add_osm_feature(key = "place", value = "island") %>%

osmdata_sf()

# extract the coast data

gran_canaria_sf = gran_canaria_query$osm_multipolygons

# make spatial vector

gran_canaria_vect = st_transform(gran_canaria_sf, crs(b2)) %>%

vect()

```

## Masking Ocean Values

```{r}

b2 = mask(b2, gran_canaria_vect)

b3 = mask(b3, gran_canaria_vect)

b4 = mask(b4, gran_canaria_vect)

b5 = mask(b5, gran_canaria_vect)

b6 = mask(b6, gran_canaria_vect)

b7 = mask(b7, gran_canaria_vect)

b10 = mask(b10, gran_canaria_vect)

```

## Calculating NDVI

```{r, warning=FALSE}

# calc and plot ndvi using bands 5 and 4

ndvi = (b5-b4)/(b5+b4)

plot_rast(ndvi,

"Normalised Difference Vegetation Index (NDVI)",



c("brown", "green"))

```

## Calculating NDBI

```{r}

ndbi = (b6-b5)/(b6+b5)

plot_rast(ndbi,

"Normalised Difference Built Index (NDBI)",

c("lightgreen", "black"))

```

## Calculating NDWI

```{r}

# calc and plot

ndwi = (b3-b7)/(b3+b7)

plot_rast(ndwi,

"Normalised Difference Water Index (NDWI)",

c("yellow", "blue"))

```

## Calculating Surface Albedo

```{r}

# calc and plot

albedo = (0.356*b2+0.0130*b4+0.373*b5+0.085*b6+0.072*b7-0.0018)/1.016

plot_rast(albedo,

expression(paste("Surface Albedo (", alpha,")")),

c("pink", "blue"))

```

## Calculating LST

### Top of Atmosphere Spectral Radiance

```{r}

# define metadata values

mult_b10 = 3.8e-04

add_b10 = 0.1

# calc and plot

l = (mult_b10*b10+add_b10)

plot_rast(l,

expression(Spectral~Radiance~(L[lambda])),



c("brown", "yellow"))

```

### At-Sensor Temperature

```{r}

# add effective wavelength of landsat b10

k1 = 799.0284

k2 = 1329.2405

# calc and plot

bt = (k2/log(k1/l+1))

plot_rast(bt,

expression(Brightness~Temp~(BT)),

c("blue", "red"))

```

### Surface Level Emissivity

#### Fractional Vegetation Factor

```{r}

# define min and max ndvi

min_ndvi = global(ndvi, fun=min, na.rm=TRUE) %>%

as.numeric()

max_ndvi = global(ndvi, fun=max, na.rm=TRUE) %>%

as.numeric()

# calc and plot vegetation factor

pv = ((ndvi-min_ndvi)/(max_ndvi-min_ndvi))^2

plot_rast(pv,

expression(Fractional~Vegetation~Factor~(P[v])),

c("maroon", "green"))

```

#### Emissivity

```{r}

# soil emissivity

es = 0.964

# veg emissivity

ev = 0.984

# calc and plot emissivity

e = ev*pv+es*(1-pv)+0.005

plot_rast(e,



expression(Emissivity~(epsilon*lambda)),

c("yellow", "darkgreen"))

```

### Correction Constant

```{r}

# speed of light

c = 2.997925e8

# planck's constant

h = 6.626070e-34

# boltzmann's constant

sigma = 1.380649e-23

# calc and output correction constant/rho

rho = c*h/sigma

rho

```

### Land Surface Temperature

```{r}

# wavelength

wl = 10.895e-6

# calc and plot

ts = bt/(1+(wl*bt/rho)*log(e))-273.15

plot_rast(ts,

expression(Land~Surface~Temperature~(T[s])), c("blue", "red"))

```

#### Leaflet Visualisation of LST

Using the Leaflet Package for R, we can visualise the resulting raster

```{r}

plet(ts,

col=(c("darkblue","pink")),

legend="bottomright",

main="LST (Cº)",

tiles=c("Esri.WorldImagery"))

```

## Stack and Export

Export July data as a csv



```{r}

stack = c(ndvi, ndbi, ndwi, albedo, ts)

data_df = na.omit(as.data.frame(stack, xy=TRUE))

data_df$month = "july"

names(data_df) = c("X", "Y",

"NDVI","NDBI",

"NDWI", "Albedo", "TS",

"Month")

write_csv(data_df, "july.csv")

```

Seasonality and Daylight Hours

``{r}

library(tidyverse)

library(geosphere)

```

```{r}

# create a vector with the day numbers through the year

day_numbers = c(5, 79, 138, 205, 255, 316)

# convert the vector into a tibble

day_numbers_tibble = tibble(Day_Number_Through_Year = day_numbers)

dl = daylength(27.749997, day_numbers) %>% round(2) %>% as_tibble()

names(dl) = "Daylight"

dl$Month = c("january", "march", "may", "july", "september", "november")

dl %>% write_csv("daylight.csv")

```

OSM and Control Variables

# Introduction

Here the various control variables are determined

```{r, message=FALSE}

# load packages

library(tidyverse)

library(terra)

library(RColorBrewer)

library(sf)

library(leaflet)



library(osmdata)

```

## Loading Data

```{r}

# load one raster, for use as crs

b2 = rast("landsat_july/B2.TIF")

```

### Loading Coast Shapefile

```{r, warning=FALSE}

# query osm

gran_canaria_query = opq(bbox = "Gran Canaria") %>%

add_osm_feature(key = "place", value = "island") %>%

osmdata_sf()

# extract the coast data

gran_canaria_sf = gran_canaria_query$osm_multipolygons

# make spatial vector

gran_canaria_vect = st_transform(gran_canaria_sf, crs(b2)) %>%

vect()

```

### Loading Tourism Shapefile

```{r}

# query osm

osm_tourism = opq(bbox = bbox_osm) %>%

add_osm_feature(key = "tourism") %>%

osmdata_sf()

# extract tourism points

tourism_vect = st_transform(osm_tourism$osm_points, crs(b2)) %>%

vect()

plot(tourism_vect)

```

### Loading Pool Shapefile

```{r}

osm_pool = opq(bbox = bbox_osm) %>%

add_osm_feature(key = "leisure", value = "swimming_pool") %>%

osmdata_sf()

pool_vect = st_transform(osm_pool$osm_polygons, crs = st_crs(b2)) %>%

vect()



osm_pool$osm_polygons

# Plot the water features

plot(pool_vect)

```

### Loading Building Shapefile

```{r}

# query osm

osm_building = opq(bbox = bbox_osm) %>%

add_osm_feature(key = "building") %>%

osmdata_sf()

# extract building polygons

building_vect = st_transform(osm_building$osm_polygons, crs(b2)) %>%

vect()

plot(building_vect)

```

## Calculating Distance from Ocean

```{r}

# create blank template

bbox = ext(c(437292.6282,445376.8775,3067829.6809,3072637.1023))

template = crop(rast("landsat_july/B1.TIF"), bbox)

# crop sp by bbox

gran_canaria_vect = crop(gran_canaria_vect, bbox)

# create land raster

sea_mask = rasterize(gran_canaria_vect,

template,

NA,

background=1)

# calc distance and plot

coastdistance = distance(sea_mask) %>%

mask(gran_canaria_vect) / 1000

terra::plot(coastdistance, col = hcl.colors(100))

plot(gran_canaria_vect, add = TRUE)

mtext(text="Coastal Distance (km)", side=3, line=2)

```

## Calculating Tourism Exposure

Furthermore, there the effect of exposure to tourism, modelled here using a

heatmap, again calculated using OSM data.



```{r}

# create tourism raster

tourism_mask = rasterize(tourism_vect,

template,

1,

background=NA)

# create heatmap

tourism_kernal = focalMat(tourism_mask, 400, "Gauss")

tourism_heat = focal(tourism_mask, tourism_kernal,

fun = sum, na.rm = TRUE)

tourism_heat[is.na(tourism_heat)] = 0

tourism_heat = tourism_heat %>%

mask(gran_canaria_vect) %>%

scale()

# plot

plot(tourism_heat)

plot(gran_canaria_vect, add = TRUE)

plot(building_vect, add = TRUE)

mtext(text="Tourism Exposure", side=3, line=2)

```

## Calculating Building Footprint Heatmap

```{r}

# create buidling raster

building_mask = rasterize(building_vect,

template,

1,

background=NA)

# create heatmap

building_kernal = focalMat(building_mask, 400, "Gauss")

building_heat = focal(building_mask, building_kernal,

fun = sum, na.rm = TRUE)

building_heat[is.na(building_heat)] = 0

building_heat = building_heat %>%

mask(gran_canaria_vect) %>%

scale()

building_heat

plot(building_heat)

plot(gran_canaria_vect, add = TRUE)

plot(building_vect, add = TRUE)

mtext(text="Building Concentration", side=3, line=2)

```

## Calculating Swimming Pool Heatmap



```{r}

# create buidling raster

pool_mask = rasterize(pool_vect,

template,

1,

background=NA)

# create heatmap

pool_kernal = focalMat(pool_mask, 400, "Gauss")

pool_heat = focal(pool_mask, pool_kernal,

fun = sum, na.rm = TRUE)

pool_heat[is.na(pool_heat)] = 0

pool_heat = pool_heat %>%

mask(gran_canaria_vect) %>%

scale()

plot(pool_heat)

plot(gran_canaria_vect, add = TRUE)

plot(pool_vect, add = TRUE)

mtext(text="Swimming Pool Concentration", side=3, line=2)

```

## Calculating Elevation

Load in 30m resolution from STRM project. The processing steps here are just to

plot and visualise it with a custom colour scale.

```{r}

# load elevation raster, resample, and crop

strm = rast("strm/strm.tif") %>%

project(crs(b2)) %>%

resample(b2, method = "bilinear") %>%

crop(bbox) %>%

mask(gran_canaria_vect)

# plot

plot(strm)

plot(gran_canaria_vect, add = TRUE)

plot(building_vect, add = TRUE)

mtext(text="Elevation (m)", side=3, line=2)

```

## Stack and Export

```{r}

control_stack = c(coastdistance, tourism_heat, building_heat,

road_heat, strm, pool_heat)

data_df = na.omit(as.data.frame(control_stack, xy=TRUE))



names(data_df) = c("X", "Y",

"CoastDistance","TourismConcentration",

"BuildingConcentration", "RoadConcentration", "Elevation",

"PoolConcentration")

write_csv(data_df, "control_variables.csv")

```

Analysis and Model Building
# Introduction

Training a variety of models predicting and understanding TS using LandSat 8 at

30m resolution.

```{r, message=FALSE}

# load packages

library(tidyverse)

library(terra)

library(RColorBrewer)

library(sf)

library(leaflet)

library(osmdata)

library(modelsummary)

library(ggnewscale)

library(nnet)

library(car)

library(corrplot)

library(nortest)

library(car)

```

# Loading and Binding

```{r}

jan = read.csv("january.csv")

march = read.csv("march.csv")

may = read.csv("may.csv")

july = read.csv("july.csv")

sept = read.csv("september.csv")

nov = read.csv("november.csv")

# bind together

total_data = rbind(jan, march, may, july, sept, nov)

# load control data and join

controls = read.csv("control_variables.csv")

total_data = left_join(total_data, controls,



by = c("X" = "X",

"Y" = "Y"))

# load daylight and join

daylight = read.csv("daylight.csv")

total_data = left_join(total_data, daylight,

by = c("Month" = "Month"))

# calc average ndvi, ndwi, albedo, TS

mean_data = total_data %>%

group_by(X, Y) %>%

summarise(NDVI = mean(NDVI),

NDWI = mean(NDWI),

Albedo = mean(Albedo),

TS = mean(TS),

.groups = "drop")

mean_data = left_join(mean_data, controls,

by = c("X" = "X",

"Y" = "Y"))

builtup_data = total_data %>% filter(BuildingConcentration > 0)

```

# Monthly Tables

```{r}

total_data %>%

group_by(Month) %>%

summarise(NDVI = round(mean(NDVI), 2),

NDWI = round(mean(NDWI), 2),

TS = round(mean(TS), 2))

```

# Hypothesis Tests

## H2

```{r}

touristic_data = mean_data %>% filter(TourismConcentration > 0 &

BuildingConcentration > 0)

non_touristic_data = mean_data %>% filter(TourismConcentration < 0 &

BuildingConcentration > 0)

# Calculate means for each variable in both groups

touristic_means <- touristic_data %>%

summarize(

Mean_NDVI = mean(NDVI, na.rm = TRUE),

Mean_NDWI = mean(NDWI, na.rm = TRUE),

Mean_PoolConcentration = mean(PoolConcentration, na.rm = TRUE),

Mean_CoastDistance = mean(CoastDistance, na.rm = TRUE)

)



non_touristic_means <- non_touristic_data %>%

summarize(

Mean_NDVI = mean(NDVI, na.rm = TRUE),

Mean_NDWI = mean(NDWI, na.rm = TRUE),

Mean_PoolConcentration = mean(PoolConcentration, na.rm = TRUE),

Mean_CoastDistance = mean(CoastDistance, na.rm = TRUE)

)

# Perform Mann-Whitney U tests

ndvi_mann_whitney <- wilcox.test(touristic_data$NDVI, non_touristic_data$NDVI)

ndwi_mann_whitney <- wilcox.test(touristic_data$NDWI, non_touristic_data$NDWI)

pool_mann_whitney <- wilcox.test(touristic_data$PoolConcentration,

non_touristic_data$PoolConcentration)

distance_mann_whitney <- wilcox.test(touristic_data$CoastDistance,

non_touristic_data$CoastDistance)

results_table <- data.frame(

Variable = c("NDVI", "NDWI", "PoolConcentration", "CoastDistance"),

Mean_Touristic = round(c(touristic_means$Mean_NDVI, touristic_means$Mean_NDWI,

touristic_means$Mean_PoolConcentration, touristic_means$Mean_CoastDistance), 3),

Mean_Non_Touristic = round(c(non_touristic_means$Mean_NDVI,

non_touristic_means$Mean_NDWI, non_touristic_means$Mean_PoolConcentration,

non_touristic_means$Mean_CoastDistance), 3),

p_value = round(c(ndvi_mann_whitney$p.value, ndwi_mann_whitney$p.value,

pool_mann_whitney$p.value, distance_mann_whitney$p.value), 3)

)

# Print the results table

print(results_table)

```

## H3

```{r}

# Check for normality using Anderson-Darling test

ad.test(touristic_data$TS)

ad.test(non_touristic_data$TS)

mean(non_touristic_data$TS)

mean(touristic_data$TS)

wilcox.test(touristic_data$TS, non_touristic_data$TS)

```

# Pearson Regression Matrix

```{r}

matrix_data = total_data %>%

select(TS, TourismConcentration, BuildingConcentration, Albedo, NDVI,

NDWI, CoastDistance, Daylight, Elevation, PoolConcentration)



names(matrix_data) = c("Surface Temp", "Tourism", "Buildings",

"Albedo", "NDVI", "NDWI",

"Coast Distance", "Daylight",

"Elevation", "Swimming Pools")

cor_matrix = cor(matrix_data, use = "complete.obs")

corrplot(cor_matrix, method = "number", type = "upper", order = "hclust",

tl.col = "black", tl.srt = 45, number.cex = 0.6,

col=colorRampPalette(c("darkblue","pink","red"))(100))

```

# General Linear Models

## H1

```{r}

# h1 models

models_h1 = list(

"Year Round" = lm(TS ~

Albedo +

NDVI +

NDWI +

PoolConcentration +

CoastDistance +

Elevation +

Daylight,

data = total_data),

"January" = lm(TS ~

Albedo +

NDVI +

PoolConcentration +

NDWI +

CoastDistance +

Elevation,

data = total_data %>% filter(Month == "january")),

"March" = lm(TS ~

Albedo +

NDVI +

NDWI +

PoolConcentration +

CoastDistance +

Elevation,

data = total_data %>% filter(Month == "march")),

"May" = lm(TS ~

Albedo +

NDVI +

NDWI +

PoolConcentration +

CoastDistance +

Elevation,



data = total_data %>% filter(Month == "may")),

"July" = lm(TS ~

Albedo +

NDVI +

NDWI +

PoolConcentration +

CoastDistance +

Elevation,

data = total_data %>% filter(Month == "july")),

"September" = lm(TS ~

Albedo +

NDVI +

NDWI +

PoolConcentration +

CoastDistance +

Elevation,

data = total_data %>% filter(Month == "september")),

"November" = lm(TS ~

Albedo +

NDVI +

NDWI +

PoolConcentration +

CoastDistance +

Elevation,

data = total_data %>% filter(Month == "november")))

modelsummary(models_h1, stars = TRUE)

```

## H2

```{r}

# h2 models

ols_h2a = lm(TourismConcentration ~

Albedo +

NDVI +

NDWI +

PoolConcentration +

CoastDistance +

Elevation,

data = mean_data %>% filter(BuildingConcentration > 0))

modelsummary(ols_h2a, stars = TRUE)

summary(ols_h2a)

```

## H3

### Split Models



```{r}

# split the dataset

high_tourism = subset(builtup_data, TourismConcentration > 0)

low_tourism = subset(builtup_data, TourismConcentration < 0)

# fit separate models for high and low tourism Concentration areas

split_models = list(

"Touristic LST" = lm(TS ~ BuildingConcentration + Albedo + NDVI + NDWI +

CoastDistance + Elevation + PoolConcentration + Daylight, data = high_tourism),

"Non-Touristic LST " = lm(TS ~ BuildingConcentration + Albedo + NDVI + NDWI +

CoastDistance + Elevation + Daylight + PoolConcentration, data = low_tourism))

# compare summaries

modelsummary(split_models, stars = TRUE)

```

### Polynominal Interaction Modeling

```{r}

model_poly_interaction = lm(TS ~

BuildingConcentration + I(BuildingConcentration^2) +

TourismConcentration + I(TourismConcentration^2) +

Albedo + NDVI + NDWI +

CoastDistance + Elevation + Daylight +

PoolConcentration +

BuildingConcentration:TourismConcentration +

BuildingConcentration:Albedo +

BuildingConcentration:NDVI +

BuildingConcentration:NDWI +

BuildingConcentration:Elevation +

BuildingConcentration:CoastDistance +

BuildingConcentration:Daylight +

BuildingConcentration:PoolConcentration +

TourismConcentration:Albedo +

TourismConcentration:NDVI +

TourismConcentration:NDWI +

TourismConcentration:Elevation +

TourismConcentration:CoastDistance +

TourismConcentration:Daylight +

TourismConcentration:PoolConcentration,

data = total_data)

# summary of the polynomial model with interactions

modelsummary(model_poly_interaction, stars = TRUE)

summary(model_poly_interaction)

```

# Graphing



## Mean LST

```{r}

scatterplot = ggplot() +

geom_point(data = mean_data %>% filter(BuildingConcentration > 0),

aes(x = BuildingConcentration,

y = TS,

colour = TourismConcentration),

alpha = 0.03) +

scale_color_viridis_c(name = "Tourism Concentration") +

labs(title = "Effects of Building Concentration on Land Surface Temperature",

subtitle = "Yearly Mean Values,

Maspalomas/Playa del Inglés region of Gran Canaria",

caption = "Model Based on LandSat Imagery from 2023",

x = "Building Concentration Index",

y = "Land Surface Temperature ºC")

scatterplot

```

## Land Use Features

```{r}

# plotting tourism concentration vs NDVI

ggplot(mean_data %>% filter(BuildingConcentration > 0), aes(x =

TourismConcentration, y = NDVI)) +

geom_point() +

geom_smooth(method = "lm") +

ggtitle("Tourism Concentration vs. NDVI")

# plotting tourism concentration vs NDWI

ggplot(mean_data %>% filter(BuildingConcentration > 0), aes(x =

TourismConcentration, y = NDWI)) +

geom_point() +

geom_smooth(method = "lm") +

ggtitle("Tourism Concentration vs. NDWI")

# plotting tourism concentration vs pools

ggplot(mean_data %>% filter(BuildingConcentration > 0), aes(x =

TourismConcentration, y = PoolConcentration)) +

geom_point() +

geom_smooth(method = "lm") +

ggtitle("Tourism Concentration vs. Pool Concentration")

# plotting tourism concentration vs coast

ggplot(mean_data %>% filter(BuildingConcentration > 0), aes(x =

TourismConcentration, y = CoastDistance)) +

geom_point() +

geom_smooth(method = "lm") +

ggtitle("Tourism Concentration vs. Coastal Distance")



```

## Land Use Regression Plots

```{r}

tourism_dense = tibble(

NDVI = mean(high_tourism$NDVI),

BuildingConcentration = seq(min(high_tourism$BuildingConcentration),

max(high_tourism$BuildingConcentration),

by = 0.05),

Albedo = mean(high_tourism$Albedo),

NDWI = mean(high_tourism$NDWI),

Daylight = mean(high_tourism$Daylight),

CoastDistance = mean(high_tourism$CoastDistance),

PoolConcentration = mean(high_tourism$PoolConcentration),

Elevation = mean(high_tourism$Elevation)

)

tourism_sparse = tibble(

NDVI = mean(low_tourism$NDVI),

BuildingConcentration = seq(min(low_tourism$BuildingConcentration),

max(low_tourism$BuildingConcentration),

by = 0.05),

Albedo = mean(low_tourism$Albedo),

NDWI = mean(low_tourism$NDWI),

Daylight = mean(low_tourism$Daylight),

CoastDistance = mean(low_tourism$CoastDistance),

PoolConcentration = mean(low_tourism$PoolConcentration),

Elevation = mean(low_tourism$Elevation)

)

# predict values

tourism_dense_predictions = predict(

split_models$`Touristic LST`,

newdata = tourism_dense,

se.fit = TRUE,

interval = "confidence") %>%

as.data.frame() %>%

bind_cols(tourism_dense) %>%

select(c("fit.fit", "fit.lwr", "fit.upr", "BuildingConcentration"))

tourism_dense_predictions$area = "Touristic"

tourism_sparse_predictions = predict(

split_models$`Non-Touristic LST `,

newdata = tourism_sparse,

se.fit = TRUE,

interval = "confidence") %>%

as.data.frame() %>%



bind_cols(tourism_sparse) %>%

select(c("fit.fit", "fit.lwr", "fit.upr", "BuildingConcentration"))

tourism_sparse_predictions$area = "Non-Touristic"

# bind into toplot

toplot = rbind(tourism_dense_predictions,

tourism_sparse_predictions)

# comparison plot

all_density_plot = ggplot(data = toplot,

aes(x = BuildingConcentration,

y = fit.fit,

ymin = fit.lwr,

ymax = fit.upr,

fill = area)) +

geom_line(alpha = 2) +

geom_ribbon(alpha = 0.5) +

scale_fill_manual(values = c("Non-Touristic" = "blue", "Touristic" = "red"),

name = "Area Type") +

labs(title = "Effects of Building Concentration on Land Surface Temperature",

subtitle = "All Building Concentrations,

Maspalomas/Playa del Inglés region of Gran Canaria",

caption = "Model Based on LandSat Imagery from 2023",

x = "Building Concentration Index",

y = "Predicted Land Surface Temperature ºC")

all_density_plot

```

## Polynominal Plots

```{r}

# all building concentrations, polynominal

tourism_area = tibble(

TourismConcentration = 2,

NDVI = mean(total_data$NDVI),

BuildingConcentration = seq(min(total_data$BuildingConcentration),

max(total_data$BuildingConcentration),

by = 0.05),

Albedo = mean(total_data$Albedo),

NDWI = mean(total_data$NDWI),

Daylight = mean(total_data$Daylight),

PoolConcentration = mean(total_data$PoolConcentration),

CoastDistance = mean(total_data$CoastDistance),

Elevation = mean(total_data$Elevation)

)

residence_area = tibble(

TourismConcentration = -0.5,



NDVI = mean(total_data$NDVI),

BuildingConcentration = seq(min(total_data$BuildingConcentration),

max(total_data$BuildingConcentration),

by = 0.05),

Albedo = mean(total_data$Albedo),

NDWI = mean(total_data$NDWI),

Daylight = mean(total_data$Daylight),

PoolConcentration = mean(total_data$PoolConcentration),

CoastDistance = mean(total_data$CoastDistance),

Elevation = mean(total_data$Elevation)

)

# bind together

scenario = rbind(tourism_area, residence_area)

# predict values

area_predictions = predict(

model_poly_interaction,

newdata = scenario,

se.fit = TRUE,

interval = "confidence"

)

# make tibble

area_predictions = area_predictions$fit %>%

as_tibble()

# make toplot

toplot = bind_cols(scenario,

area_predictions)

toplot = select(toplot, c("fit", "lwr", "upr",

"BuildingConcentration",

"TourismConcentration"))

toplot$area = ifelse(toplot$TourismConcentration == -0.5, "Non-Touristic",

"Tourist")

# plot polynominals

poly_density_plot_lines = ggplot(data = toplot,

aes(x = BuildingConcentration,

y = fit,

ymin = lwr,

ymax = upr,

fill = area)) +

geom_line(alpha = 2) +

geom_ribbon(alpha = 0.5) +

scale_fill_manual(values = c("Non-Touristic" = "blue", "Tourist" = "red"),

name = "Area Type") +



labs(title = "Effects of Building Concentration on Land Surface Temperature",

subtitle = "All Building Concentrations,

Maspalomas/Playa del Inglés region of Gran Canaria",

caption = "Model Based on LandSat Imagery from 2023",

x = "Building Concentration Index",

y = "Land Surface Temperature ºC")

poly_density_plot_points = ggplot() +

geom_line(data = toplot,

aes(x = BuildingConcentration,

y = fit,

colour = area),

alpha = 2) +

geom_ribbon(data = toplot,

aes(x = BuildingConcentration,

y = fit,

ymin = lwr,

ymax = upr,

fill = area),

alpha = 0.5) +

scale_colour_manual(values = c("Non-Touristic" = "blue", "Tourist" = "red"),

name = "Area Type") +

scale_fill_manual(values = c("Non-Touristic" = "lightblue", "Tourist" = "pink"),

name = "Area Type") +

new_scale_color() +

geom_point(data = mean_data,

aes(x = BuildingConcentration,

y = TS,

colour = TourismConcentration),

alpha = 0.01) +

scale_color_viridis_c(name = "Tourism Concentration") +

labs(title = "Effects of Building Concentration on Land Surface Temperature",

subtitle = "All Building Concentrations,

Maspalomas/Playa del Inglés region of Gran Canaria",

caption = "Model Based on LandSat Imagery from 2023",

x = "Building Concentration Index",

y = "Land Surface Temperature ºC")

poly_density_plot_lines

poly_density_plot_points

```
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