
 
 

 

  

 
 

 

 

 

COASTAL FLOOD 
VULNERABILITY IN GHANA 
 

What are the most vulnerable coastal districts to floods 

in Ghana? 

BACHELOR THESIS 

 

 

 

 

By: Ekow Daniels 

S4874560 

Supervisor: Daniella Vos 



 

Page | 1  
 

Table of Contents 
Summary ................................................................................................................................................. 2 

Introduction ............................................................................................................................................ 3 

Research Problem ................................................................................................................................... 3 

Thesis Structure ...................................................................................................................................... 4 

Theoretical Framework ........................................................................................................................... 4 

Concepts and Theories in Flood Vulnerability Studies........................................................................ 4 

Conceptual Model ................................................................................................................................... 6 

Data and Methodology ........................................................................................................................... 7 

Data ..................................................................................................................................................... 7 

Data Management and Ethics ............................................................................................................. 7 

Methodology ....................................................................................................................................... 8 

Physical Flood Vulnerability Variables ................................................................................................ 9 

Social Flood Vulnerability Variables .................................................................................................. 10 

Analytical Hierarchy Process (AHP) ................................................................................................... 13 

Consistency Check ............................................................................................................................. 14 

Findings ................................................................................................................................................. 17 

Physical Flood Vulnerability Index (PhyFVI) ...................................................................................... 17 

Social Flood Vulnerability Index (FSoVI) ........................................................................................... 18 

Coastal Flood Vulnerability Index (CFVI) ........................................................................................... 20 

Conclusion ............................................................................................................................................. 22 

Limitations ............................................................................................................................................ 22 

Recommendations ................................................................................................................................ 23 

References ............................................................................................................................................ 24 

 

 
 

 

 

 

 

 



 

Page | 2  
 

Summary 

Climate change poses a challenge to coastal cities in the world. As global coastal populations 

are estimated to grow in the face of rising sea levels and changing precipitation patterns 

coastal cities are becoming increasingly vulnerable to floods. Ghana has a coastline of 

approximately 560km which yearly experiences coastal flooding due to these climate 

change-induced flood hazards. For this reason, this study seeks to assess coastal flood 

vulnerability in Ghana at a district level to answer the central question What are the most 

vulnerable coastal districts to floods in Ghana? This study adopts the indicator approach 

using the Multi-Criteria Decision Analysis(MCDA) based on an Analytical Hierarchy Process 

(AHP) to determine the weights in addition to geoprocessing tools in a GIS environment to 

generate a Coastal Flood Vulnerability Index of the coastal districts of Ghana. The results 

indicate that the Ketu South Municipality is the most vulnerable coastal district to floods 

with a mean index of 3.8 indicating high vulnerability to floods. This research would help 

policymakers address the ongoing problem of floods in the coastal districts of Ghana by 

providing a basis for flood impact mitigation. 

 

Keywords Coastal Flood Vulnerability, Ghana, AHP, MCDA, Physical Flood Vulnerability, Social 

Flood Vulnerability, GIS. 
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Introduction 

Climate change is a well-researched issue in the world today. The effects of this include 

storm surges, rising sea levels, changing precipitation patterns, and many others which may 

increase the vulnerability of coastal dwellers to floods. This problem poses several 

challenges to coastal cities in the world and especially to developing countries like Ghana. 

According to the UNISDR (2011), 70 million people are exposed to floods and this number is 

estimated to increase in the future as the global coastal population is expected to increase 

from 1-1.4 billion by 2060 (Neumann et al., 2015) which would increase the number of 

people at risk of floods.  To reduce the probable effects of this problem, vulnerability 

assessments are often used as a major step toward ensuring disaster reduction (Roy and 

Blaschke, 2015). Analyzing flood vulnerability is important because coastal areas are 

particularly susceptible to climate-influenced disasters (Roy and Blaschke, 2015). It helps 

decision-makers to adopt strategies to reduce the impact of floods on the citizens. It could 

additionally inform decision-makers on which areas should receive more investment for 

disaster prevention (Roy and Blaschke, 2015). 

Research Problem 

In Ghana, there has been an increase in coastal floods due to storm surges, tidal wave 

flooding, and heavy torrential rainfall (Babanawo et al, 2023) which has often led to the loss 

of lives and properties. In the face of this problem, there is however little spatially explicit 

flood vulnerability research conducted in coastal regions of Ghana. Most research on this 

issue was conducted in Accra (Yankson et al., 2017; Atakorah et. al, 2023) which is known to 

have 71% of the metropolis susceptible to floods.  Others focus only on the delta and 

estuary areas of Ghana (Babanawo et al, 2023; Ofosu et al., 2020). In addition, the majority 

of the existing body of research focuses on the physical vulnerability assessment which 

overlooks the socio-economic impact of floods (Babanawo et al, 2023). Also, most research 

on this topic is mostly on lower spatial resolution. For example, Dada et al. (2024) assessed 

coastal flood vulnerability but on a West African spatial level.  For this reason, this research 

aims to contribute to flood vulnerability research by conducting a flood vulnerability 

assessment in all 31 coastal districts of Ghana. This research seeks to answer the central 

question; what are the most vulnerable coastal districts to floods in Ghana? 

In addition, this research aims to answer the following sub-questions. 

What are the most physically vulnerable coastal districts to floods in Ghana? 

What are the most socially vulnerable coastal districts to floods in Ghana? 

What are the advantages and limitations of using an MCDA-based AHP model in assessing 

coastal flood vulnerability in Ghana? 
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Thesis Structure 

The next section delves into the theoretical and conceptual underpinning of this study. After 

that, the data and methodology outline the various datasets and methods used in 

conducting this research. This is followed by the findings of the study. This is followed by the 

conclusions, limitations, and recommendations of this study. 

Theoretical Framework 

Concepts and Theories in Flood Vulnerability Studies 

a. Hazard, Exposure, Susceptibility and Coping Capacity 

The concept of hazard is central to vulnerability studies. Since this study is concerned with 

flood vulnerability, the natural hazard of interest is flooding. White et. al (2005) defined 

vulnerability as the interrelation between exposure, susceptibility, and coping capacity. It is 

the degree to which a system, subsystem, or its components are exposed to stress or 

perturbation (Turner et al., 2003). Exposure in flood vulnerability research deals with how 

much an object is in contact with the hazard. Susceptibility entails how sensitive or resistant 

to the effects of a flood (Fernandez et al. 2016) while coping capacity can be described as 

the recovery potential or resilience (Fernandez et al. 2016). Smit and Wandel (2006) argued 

that exposure and the susceptibility of the system are influenced by an interaction of the 

environment and social forces while the coping capacity is shaped by socioeconomic, 

cultural, and political factors. 

b. Physical and Social Vulnerability 

Coastal flood vulnerability studies used in assessing climate change-influenced flood hazards 

are studied under one or more of the three main theoretical pillars namely bioecological, 

physical, and social vulnerability. For our research, social vulnerability and physical 

vulnerability will be the most important. Bioecological vulnerability often deals with how 

ecosystems are prone to the effects of floods and their impacts on ecosystem services 

(Bevacqua et al., 2018). Physical vulnerability is the “combination of the predisposition of 

the exposed elements to suffering damage and the potential of natural hazards to cause 

damage” (Leal et al, 2021: page 2). This is a popular approach to evaluating vulnerability in 

traditional flood risk assessment studies (Kind et al., 2020). Under this, vulnerability is 

assessed using physical factors that expose a society to the hazard (Mattah et al., 2023). 

Deepak et al., (2020) combined several different physical-environmental indicators to assess 

vulnerability. Their rationale was that physical vulnerability is concerned primarily with the 

susceptibility to floods. Unlike social vulnerability, physical vulnerability to flood hazards 

could be the same for all the people exposed to the hazard (Deepak et al., 2020). However, 

other authors who assess physical vulnerability view through the lens of damage to assets 

using hydrological flood modeling and damage curves to estimate the maximum potential 

damage based on the water depth of the flood (Kind et al., 2020; Leal et al, 2021; Zhou et 
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al., 2021). This approach requires the user to have a lot of data on the building types, 

building floor levels, building materials costs, damage curves, and an in-depth knowledge of 

hydrological modeling. Due to the unavailability of publicly accessible data on this, the 

indicator approach would be adopted for this research to assess physical vulnerability.  

 

Social vulnerability to hazards was pioneered by Cutter et al, (2003) who argued that 

vulnerability to hazards is a result of the inequalities that exist within social groups which 

influence their susceptibility and coping capacity to disasters like floods. They indicated that 

these inequalities could arise because of place inequalities which could be influenced by 

physical factors. Kind et al. (2020) defined social vulnerability to floods as “the consumption 

lost in a year after a flood (accounting for financial protection), as a fraction of annual 

income” (Kind et al., 2020: page 120).  

c. Vulnerability Index 

One of the most used ways of estimating vulnerability is using a vulnerability index (Ajtai et 

al., 2023). This is based on an indicator approach that combines various variables that 

influence vulnerability (Ajtai et al., 2023). For physical vulnerability, the index would be 

based on different physical indicators that make people susceptible to floods as indicated by 

Deepak et al. (2020). Social vulnerability to floods index on the other hand is normally 

assessed using the method propounded by Cutter et al. (2003) which combines several 

socio-demographic variables to create a vulnerability index to a natural hazard. This 

approach has been modified over the years to include weights since various variables may 

have more impact on vulnerability than others (Ajtai et al., 2023). Since physical and social 

vulnerability are interlinked due to place inequalities (Cutter et al, 2003), this research seeks 

to combine both theories into a coastal assessment of flood vulnerability of the coastal 

districts of Ghana using GIS to combine both vulnerabilities into a single index which would 

be expanded upon in the methodology and results sections of this paper. 
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Conceptual Model 

The various concepts and theories explored in the previous section are summarized in the 

conceptual model below which shows the relationship between the various concepts and 

theories outlined in the theoretical framework. The hazard in this model is the flood event 

which could arise because of rainfall, storm surges, or tidal forces. The social and physical 

flood vulnerability are interlinked because of the findings of Cutter et al, (2003) who 

demonstrated in their paper how the two theories often influence each other for exposure, 

susceptibility, and coping capacity. Also, based on Smit and Wandel (2006) the interaction of 

social and environmental factors influences susceptibility and exposure while 

socioeconomic, cultural, and political factors influence the coping capacity.  

 

 

Figure 1: Conceptual Framework 
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Data and Methodology 

Data 

This research aims to answer the central question what are the most vulnerable coastal 

districts to floods in Ghana? 

To answer this question, a coastal flood vulnerability index was generated incorporating both 

the physical flood vulnerability and the social flood vulnerability in the study area. For the 

social flood vulnerability, data on the Ghana Population and Housing Census 2021 which 

contains data on the number of persons per district with some level of disabilities, age, 

gender, employment status, health insurance coverage, and education (see Table 7 in the 

appendix). 

 

Data Management and Ethics 

These datasets are openly available to use strictly for academic purposes. These datasets 

were already aggregated to a lower spatial resolution to ensure they meet the privacy and 

GDPR of the EU. The datasets were downloaded datasets on a local encrypted drive 

throughout the duration of the research. To ensure the research data was not lost in case of 

technical issues or breaches. The data was backed up on the author's Microsoft OneDrive to 

ensure that any technical setbacks would not heavily setback this research. 
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Methodology 

This research uses a Multi-Criteria Decision Analysis(MCDA) framework in carrying out flood 

vulnerability analysis. Within this framework, an Analytical Hierarchical Process (AHP) 

propounded by Saaty (1980) is adopted. This method is a structured technique that allows 

the user to determine the relative importance of various variables systematically (Vignesh et 

al., 2021) which is coupled with geospatial technologies specifically ArcGIS Pro as the main 

GIS environment used in the preparation, processing, and analysis of the various datasets 

described in the table above. To prepare the dataset for use in the AHP, first, the data had to 

be reclassified into five classes ranging from 1 which indicates the lowest vulnerability to 5 

indicating the highest vulnerability. These classes are outlined in Table 1 and the rationale 

behind the reclassification is expanded on in the next section for both the physical and the 

social flood vulnerability variables below.   

 

Figure 2: Methodological Framework of the research. 
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Physical Flood Vulnerability Variables 

a. Landuse 

The WorldCover V2 data retrieved from the European Space Agency was clipped to the study 

area using the Clip Raster geoprocessing tool in ArcGIS Pro. The various land use types were 

reclassified using the Reclassify geoprocessing tool. Since land with no vegetation cover is 

more susceptible to floods (Machado et al., 2019), Tree Cover was classified as lowest (1), 

Shrubland and Grassland as  low(2), Cropland as moderate (3), Mangroves, Built-up and 

Bareland as high(4) and lastly Permanent Water and Herbaceous Wetland as the highest (5) 

b. Slope 

This slope data was generated from the void-filled DEM using the Slope geoprocessing tool 

in ArcGIS Pro to calculate the percent rise. After this, the Reclassify tool was used to 

reclassify the slope values from lowest(1) to highest(5). 0 to 10% was classified as the 

highest(5), 20%-30% as moderate (3) while slope values greater than 40% were classified as 

the lowest(1). 

c. Elevation 

The DEM retrieved from Hydrosheds was also reclassified using the Reclassify geoprocessing 

tool in ArcGIS Pro. Since higher elevation is less susceptible to flooding, using the natural 

breaks algorithm, elevation values between -28m to 19.2m were classified as the highest (5) 

while 43.6m to 72.2m were classified as moderate (3) and elevation values more than 

105.1m were classified as lowest(1) 

d. Topographic Wetness Index (TWI) 

The TWI was calculated using the DEM. First, the degrees slope was calculated using the 

Slope geoprocessing tool in ArcGIS Pro. The flow direction and flow accumulation were 

calculated using the Flow Direction and Flow Accumulation tools respectively in the GIS 

software. Next using the Raster Calculator, the radians of slope (β) were calculated by 

multiplying the degree slope with 1.570796 and dividing the result by 90. The tan slope was 

calculated using the raster calculator. Likewise, the flow accumulation data was scaled to the 

cell size(a). Lastly, the TWI was calculated by using ln (a / tan(β)). After the calculation of the 

TWI, the values were reclassified using the Reclassify tool employing the natural breaks 

algorithm in ArcGIS Pro in 5 classes. The index values from -6.5 to -3.9 were classified as the 

lowest, -2.8 to -1.5 as moderate, and 0.3 to 6.1 as the highest. 

e. Average Precipitation 

The monthly precipitation rasters in the dataset were summed up and their total was 

divided by 12 to get the average yearly precipitation using the Raster Calculator.  Next, it was 

clipped to the area of study and classified using the Reclassify geoprocessing tool. Since the 

higher the precipitation, the greater the risk of floods, this dataset was classified into 5 



 

Page | 10  
 

classes namely 67-90(lowest), 90-105(low), 105-122(moderate), 122-142(high), 142-

165(highest). 

f. Drainage Density 

The drainage density was calculated by using the Flow Accumulation raster calculated from 

the DEM. By using the Raster calculator, a threshold value of 10000 was applied to filter out 

the less prominent stream channels from the mainstream channels. The output of this was 

converted to a vector dataset using the Raster to Polyline geoprocessing too to define the 

stream channels within the study area. Using the line density geoprocessing tool, the 

drainage density was computed in km2 with a raster output. This drainage density was 

reclassified as 1.5-4.9 (highest), 4.9-7.2(high), 7.2-9.8(moderate), 9.8-13.1(low), and 13.1-

18.0(lowest). This classification was adapted to Vignesh et al. (2020) which flood vulnerable 

zones with low density and less vulnerable zones with high density. 

Social Flood Vulnerability Variables 

a. Gender 

According to Cutter et al (2003), due to sector-specific employment, lower wages, and family 

care responsibilities, women can have a more difficult time recovering after a natural hazard 

like a flood. For this reason, the indicator total number of women per district was used in 

this research. This was then reclassified using the Reclassify Field geoprocessing tool in 

ArcGIS Pro to 5 classes as illustrated in the appendix (Figure 13). 

b. Average Household Size 

According to Mruksirisuk et al. (2023) demonstrated a high correlation between flood 

vulnerability and household size. They said, “Larger household size faces greater challenges 

in times of flooding, such as evacuation, locating suitable shelter, and meeting basic needs.”- 

Muksirisuk et al. (2023; pg 11). Using the prior geoprocessing tool, this indicator was 

reclassified into 5 classes using equal intervals as illustrated in the appendix (Figure 14). 

c. Age Dependency Ratio 

This indicator was added to the model because the event of a flood affects the livelihood of 

residents (Babanawo et al 2023) which could increase the pressure to provide for people 

dependent on them. For that reason, this indicator was added also reclassified into the 5 

classes using equal intervals. 

d. Purchasing Power Per Capita (PPPC) 

High income is associated with having a close relationship to flood sensitivity as people with 

higher incomes can adapt well in the face of a flood event making them less vulnerable (An 

et al, 2022). For this reason, this indicator was included in the model and reclassified using 

natural breaks from 1 to 5 with higher PPPC resulting in a lower vulnerability and lower PPPC 

with higher vulnerability. 
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e. Unemployment rate 

Cutter et al (2003; pg 247) argued that “the potential loss of employment following a 

disaster exacerbates the number of unemployed workers in a community, contributing to a 

slower recovery from the disaster”. This indicates a higher social vulnerability to floods if the 

unemployment rate is high within the district. Likewise, this was also reclassified as depicted 

in the appendix (Figure 17). 

f. No Health Insurance Coverage 

Access to medical services is crucial post-flood as floods could lead to physical harm to 

people which leads to the need for immediate medical services (Du et al, 2010). Babanawo 

et al (2023) noted that flood events in Ghana are also associated with health implications 

with a surge in waterborne diseases such as Cholera, Malaria, and many others. Since 

livelihoods are affected during a flood event (Cutter et al., 2003), having health insurance 

would alleviate the health challenges associated with floods. This dataset was reclassified 

with a higher number of persons with no health insurance as more vulnerable and then less 

number of people as detailed in Table 9 (see appendix). 

g. Physical Disabilities 

Cutter et al., (2003) indicated that people with disabilities are disproportionately affected 

during a natural disaster, and due to their invisibility in their communities, they tend to be 

ignored in the event of a natural disaster such as a flood. Persons with physical disabilities 

are highly vulnerable to natural hazards as they are mostly at risk of getting injured during 

the hazard (Bronfman et al., 2021). Therefore, the higher the number of persons with 

physical disabilities, the more vulnerable the district would be hence this data was 

reclassified from 1 (lowest) to 5 (highest) using the natural breaks algorithm. 

h. Renter Occupancy 

According to Cutter et al. (2003; pg 247), “People that rent do so because they are either 

transient or do not have the financial resources for home ownership. They often lack access 

to information about financial aid during recovery. In the most extreme cases, renters lack 

sufficient shelter options when lodging becomes uninhabitable or too costly to afford”. This 

means that districts with more renters are more socially vulnerable to floods than those with 

less renters. Hence, this indicator was reclassified with natural breaks from 1 (lowest) to 5 

(highest) as outlined in Table 9 (see appendix). 
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i. Educational Attainment 

Educational attainment is often linked to a higher socioeconomic status which leads to 

greater lifetime earnings (Cutter et al., 2003). This research focused on post-secondary 

school education as a measure of educational attainment considering the number of people 

who fall into this category. The higher the number of people with post-secondary education, 

the lower the social vulnerability of the district to floods. This was used to reclassify the 

dataset as depicted in the map below and outlined in Table 9 (see appendix) for each coastal 

district.
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Analytical Hierarchy Process (AHP) 

An AHP-based pairwise comparison matrix was used to assign varied weights to our 

indicators for both the physical and social flood vulnerability variables. This is done based on 

their relative importance on a scale of 1 to 9 (Figure 3) as propounded by Saaty (1980). 

These values range from less importance to more importance based on how they influence 

floods (Vignesh et al. 2021). To get the normalized pairwise matrix, each cell is divided by 

the column total of each variable. Lastly to get the Criteria Weights, the normalized value in 

each variable row is summed up and divided by the total number of criteria. 

 

Figure 3 Pairwise Comparison Scale by Saaty (1980) (Source: Vignesh et al. 2021; page 775)   

 

 Landuse Slope 
(%rise) 

Elevation 
(m) 

TWI Average Precipitation 
(mm) 

Drainage 
Density 

Landuse 1 1 2 2 2 1 

Slope 
(% rise) 

1 1 2 3 3 1 

Elevation (m) 0.5 0.5 1 3 3 3 

TWI 0.5 0.33 0.33 1 3 2 

Average 
Precipitation 
(mm) 

0.5 0.33 0.33 0.33 1 3 

Drainage 
Density 

1 0.33 0.33 0.5 0.33 1 

TOTAL 4.5 
 

3.49 
 

5.99 
 

9.83 
 

12.33 
 

11 

Table 1 Pairwise comparison matrix of 6 x 6 decision matrix for physical flood vulnerability 
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 Land use Slope Elevation TWI Average 
Precipitation 

Drainage 
Density 

Criteria 
Weights 

Land use 
0.216536 0.2470085 0.4141823 0.262538463 0.21605326 0.090067949 0.21653648 

Slope 
0.216536 0.2470085 0.4141823 0.393807694 0.32407989 0.090067949 0.247008547 

Elevation 
0.108268 0.1235043 0.2070912 0.393807694 0.32407989 0.270203848 0.207091162 

TWI 
0.108268 0.0815128 0.0683401 0.131269231 0.32407989 0.180135899 0.131269231 

Average 
Precipitation 0.108268 0.0815128 0.0683401 0.043318846 0.10802663 0.270203848 0.10802663 

Drainage 
Density 0.216536 0.0815128 0.0683401 0.065634616 0.035648788 0.090067949 0.090067949 

           ∑=1.0000 

Table 2 Normalized pair-wise comparison 6 x 6 matrix for physical flood vulnerability 

Consistency Check 

The criteria weights derived from the AHP were tested using the Consistency Ratio (CR) to 

ensure the consistency of the allotted weights (Saaty, 1980). To achieve this, the CR must be 

below 0.1 for the weights to be acceptable. The result indicated that the consistency of the 

Eigen vector-matrix achieved a CR index of 0.099 for the physical flood vulnerability matrix 

while the CR for the social flood vulnerability was 0.095 indicating the criteria weights 

generated for the analysis are acceptable and are consistent. The formula for the CR is 

outlined below. 

CR= CI / RI,  

where CR is the consistency ratio, CI is the consistency index, and RI is the random index. 

The consistency index is calculated using the formula below. 

CI= (λmax – n) / (n – 1), 

where λmax is the principal eigenvalue calculated by dividing the weighted sum vector by the 

total number of variables, while n is the total number of variables or criteria. The value of 

the RI is based on the size of the matrix. Since the physical flood vulnerability, is a 6 x 6 

matrix while the social flood vulnerability uses a 9 x 9 matrix, an RI of 1.24 and 1.45 was 

used for physical and social flood vulnerability respectively as indicated in Table 3. 

Size of Matrix 
(n) 

1 2 3 4 5 6 7 8 9 10 

Random 
Index (RI) 

0 0 0.58 0.9 1.12 1.24 1.32 1.41 1.45 1.49 

Table 3 Random Index (RI) Table 
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Gender Average 

Household 
Size 

Age 
Dependency 

Ratio 

Purchasing 
Power Per 

Capita 

Unemployment 
Rate  

No Health 
Insurance 
Coverage 

Physical 
Disabilities  

Renter 
Occupancy  

Educational 
Attainment 

Gender 1 2 2 2 3 2 2 4 5 

Average 
Household Size 

0.50 1 3 3 2 2 2 3 4 

Age 
Dependency 

Ratio 

0.50 0.30 1 3 3 2 2 4 4 

Purchasing 
Power Per 

Capita 

0.50 0.33 0.33 1 4 2 4 4 5 

Unemployment 
Rate  

0.33 0.50 0.33 0.25 1 3 4 4 5 

No Health 
Insurance 
Coverage 

0.50 0.50 0.50 0.50 0.33 1 2 2 3 

Physical 
Disabilities  

0.50 0.50 0.50 0.25 0.25 0.33 1 3 5 

Renter 
Occupancy  

0.25 0.33 0.25 0.25 0.25 0.50 0.33 1 2 

Educational 
Attainment 

0.20 0.25 0.25 0.20 0.20 0.20 0.20 0.50 1 

TOTAL 4.28 5.71 8.16 10.45 14.03 13.03 17.53 25.50 34.00 

Table 4 Pairwise comparison of 9 x 9 decision matrix for social flood vulnerability 
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Gender Average 

Household 
Size 

Age 
Dependency 

Ratio 

Purchasing 
Power Per 

Capita 

Unemployment 
Rate  

No Health Insurance 
Coverage 

Physical 
Disabilities  

Renter 
Occupancy  

Educational 
Attainment 

Criteria 
Weights 

Gender 0.233 0.350 0.245 0.191 0.214 0.153 0.114 0.157 0.147 0.201 

Average 
Household Size 

0.117 0.175 0.367 0.287 0.143 0.153 0.114 0.118 0.118 0.177 

Age 
Dependency 

Ratio 

0.117 0.053 0.122 0.287 0.214 0.153 0.114 0.157 0.118 0.148 

Purchasing 
Power Per 

Capita 

0.117 0.058 0.040 0.096 0.285 0.153 0.228 0.157 0.147 0.142 

Unemployment 
Rate  

0.078 0.088 0.041 0.024 0.071 0.230 0.228 0.157 0.147 0.118 

No Health 
Insurance 
Coverage 

0.117 0.088 0.061 0.048 0.024 0.077 0.114 0.078 0.088 0.077 

Physical 
Disabilities  

0.117 0.088 0.061 0.024 0.018 0.026 0.057 0.118 0.147 0.073 

Renter 
Occupancy  

0.058 0.058 0.031 0.024 0.018 0.038 0.019 0.039 0.059 0.038 

Educational 
Attainment 

0.047 0.044 0.031 0.019 0.014 0.015 0.011 0.020 0.029 0.026 

                 ∑=1.0000 

Table 5 Normalized pair-wise comparison 9 x 9 matrix for physical flood vulnerability 
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Findings 

Physical Flood Vulnerability Index (PhyFVI) 

The outcome of the MCA revealed that 1.06 km2 of the total area of the coastal districts had 

the lowest PhyFVI of 1. This means that 0.01% of the coastal districts were least physically 

vulnerable to floods. 5.21% of the districts recorded an index of 2 which represents low 

physical vulnerability to floods. It covers 467.44 km2 of the entire study area. the most 

recorded PhyFVI was 3 which represents a moderate physical vulnerability to floods. This 

represented 68.31% of the total study area and covers an area of 6132.51 km2. An area of 

2361.37 km2 recorded a high (4) PhyFVI which accounts for 26.30% of the total area of 

coastal districts in Ghana. Lastly, 15.54 km2 of the study area recorded the highest physical 

flood vulnerability in the study area representing 0.17% of the total study area. 

 

Figure 4: Map of Physical Flood Vulnerability Index (PhyFVI) 

However, when aggregated at a district level the highest index is 3.96 which is in the 

Ablekuma West Municipality. This district borders the Densu flood plains which get 

inundated every high tide or during a storm surge or heavy rainfall. The Glefe lagoon 

situated in this district has been known to flood frequently (Frick-Trzebitzky et al, 2017) since 

it is part of what has often been a heated dispute between the municipality and residents in 

the area due to demolition exercises which have often been one of the flood management 

approaches used by state agencies like the Ablekuma West Municipal Assembly (Amoako et 
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al, 2019). This is also because this delta has been designated as a Ramsar site protected 

under the Ramsar Convention since 1992. The outcome of this index is consistent with the 

findings of Frick-Trzebitzky et al (2017) who assessed flood risk in the Densu delta area 

identifying the Glefe as losing approximately 1 meter per year between 2005 to 2011 to 

coastal erosion which consequently increased flood risk in the area.  

Besides, the second most physically vulnerable coastal district is the Accra Metropolitan 

Area with a mean aggregated index of 3.81. This district has been affected by floods since 

the 1990s (Yankson et al., 2017). It experienced one of the most devastating floods in recent 

years on June 3rd, 2015 which resulted in 150 casualties (Yankson et al., 2017). Several 

research has been conducted in this district to assess the factors behind this. Douglas et al 

(2008) attributed this to the observed rainfall patterns change since the 1980s. Yankson et 

al., (2017) also attributed to the poor non-integrated drainage system. This could be linked 

to the political dimension of vulnerability as the government and metropolitan assemblies 

are responsible for drainage provision and maintenance in Ghana. Dekongmen et al. (2021), 

attributed the floods to the drainage density and slope of the district. This is consistent with 

the findings of this research since both variables were considered in this research. Finally, 

the district with the third highest PhyFVI is Keta Municipal with a mean index of 3.80 also 

indicating a high physical vulnerability to floods.  

On the other hand, the mean lowest PFVI is 2.82, 3.01, and 3.06 for the Abura Asebu 

Kwamankese, Mfantsiman Municipal, and Gomoa East respectively. Abura Asebu 

Kwamankese District is also home to the deciduous tropical rainforest in the northern part 

most prominent of them is the Kakum National Park which is a protected forest area. Floods 

are less likely to occur which is consistent with the findings of Machado et al (2019) which 

showed that areas with no vegetation cover are more likely to be at risk of floods.  

Social Flood Vulnerability Index (FSoVI) 

The result of the composite index revealed a mean index range of 1.1 to 3.9 in the coastal 

districts of Ghana.  It revealed that the most socially vulnerable coastal district to floods in 

Ghana is the Ketu South Municipality with a mean index of 3.95 which indicates a high social 

vulnerability to floods. Babanawo et al (2022) demonstrated high flood sensitivity scores in 

the various communities within this district which is consistent with this research. A study 

on the perspectives of factors that influence flood vulnerability in the district revealed that 

weak demographic groups, low-income levels, and low educational levels were some of the 

main factors that socially influence flood vulnerability in the district (Babanawo et al., 2023).  

The next two districts with the highest FSoVI were Ga South and Gomoa East municipalities 

with an index of 3.61 and 3.41 respectively indicating a moderate to high vulnerability to 

floods within these coastal districts. In all, 6.5% of the total districts recorded a high SoFVI 

(index>3.4). 
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Figure 5: Map of Social Flood Vulnerability Index (SoFVI) 

Additionally, the relationship between the various variables and the index was calculated 

using Pearson's Rho correlation. The results showed that all the variables had a positive 

correlation with the index except the renter occupancy variable. The average household size, 

persons with physical disabilities, and purchasing power per capita had a strong positive 

correlation of 0.69, 0.62, and 0.60 respectively indicating a strong linear relationship 

between the variable and the index. The variable with the weakest positive linear 

relationship is educational attainment with a correlation of 0.24 as indicated in the table 

below. However, the renter occupancy had no linear relationship with the index. 

 

Indicator Correlation with Index (r) 

Educational Attainment (post-secondary 
education) 

0.24 

Renter Occupancy 0.00 

Gender (Females) 0.36 

Average Household Size 0.69 

Age Dependency Ratio 0.52 

Unemployment Rate 0.49 

Persons with Physical Disabilities 0.62 

No Health Insurance Coverage 0.45 

Purchasing Power Per Capita 0.60 

Table 6 Correlation between variables and FSoVI  
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Coastal Flood Vulnerability Index (CFVI) 

The PFVI and the FSoVI were combined to produce the CFVI of the districts in Ghana. It 

resulted in Ketu South District as the most vulnerable coastal district in Ghana with a mean 

index of 3.78. This indicates a high flood vulnerability within the district. These findings are 

consistent with the findings of Babanawo et al (2023) which attributed flood vulnerability to 

various biophysical like low land elevation, inadequate coastal sea defense structures, and 

socio-economic factors which were discussed during the outcome of the FSoVI. In their 

research, respondents indicated that although there is a coastal flood defense system, the 

communities are frequently affected by floods. Flood exposure in this district could reach up 

to approximately 110.5cm which indicates that exposure within this district is already high 

(Babanawo et al, 2023). Also, it was indicated that economic activities within the district are 

affected during a flood event which prevents people from working till the flood waters drain 

(Babanawo et al 2023) impacting their livelihood. The outcome of this research also aligns 

with the findings of the authors who also attributed social vulnerability to high age 

dependency rates, low-income households, low educational attainment, and many others 

were the primary social factors influencing flood vulnerability. This is consistent with the 

Index based on its correlation with the FSoVI as outlined in the table above. Besides, the 

next two districts with the highest FSoVI are the Ga South Municipal and Anloga districts 

with indexes of 3.46 and 3.41 indicating a moderate to high vulnerability to floods in Ghana. 

It is interesting to note that three of the four highest CFVI were all districts located in the 

Volta River estuary. This aligns with various studies (Mattah et al., 2023) and news articles 

(Joy Online, 2021) written about this district. For example, Mattah et al., (2023) found high 

exposure and sensitivity to floods within communities in this area which leads to high 

vulnerability. On the other hand, the least vulnerable coastal district to floods is the Korle 

Klottey Municipality with a mean CFVI of 2.33 representing a low vulnerability to floods. 

Effutu Municipal District and La Dade-Kotopon Municipal District with a mean index of 2.55 

and 2.61 respectively. 
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Figure 6:  Map of Coastal Flood Vulnerability Index (CFVI) 

With regards to the relationship between the PFVI and the FSoVI on the index, both indexes 

had a positive correlation with the CFVI. However, the FSoVI had a very strong positive 

Pearsons correlation of 0.90 while the PFVI had a Pearsons correlation of 0.16 indicating a 

weak positive correlation with the CFVI. The two indexes also have a weak negative 

correlation to each other with a correlation of -0.29. 
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Conclusion 

This research was conducted using an MCDA-based AHP model approach to assess coastal 

flood vulnerability in Ghana. The advantage of this method is that it is suitable for analyzing 

complex decision problems that often involve incomparable criteria or variables (Shahiri 

Tabarestani & Afzalimehr, 2022). It is also a cost-effective approach to assessing risk and 

vulnerability to natural hazards (Zou et al., 2013) in a GIS environment which is crucial in a 

country like Ghana with limited investment in vulnerability research. The AHP also allows the 

user to structurally compare each variable to the other to understand their relationship 

before deciding the variable’s level of importance (Achillas et al., 2013).   

The outcome of the PhyFVI has shown that physically, flood vulnerability is generally 

moderate to high within the coastal districts of Ghana. With 42 percent of the districts 

having high physical vulnerability with Ablekuma West Municipal, Accra Metropolitan Area, 

and Keta Municipal having the highest PhyFVI in the study area. This index is consistent with 

prior studies conducted in this district as discussed in the findings. Also, the factors behind 

the high PhyFVI like poor drainage, changing precipitation patterns, drainage density, and 

many others expanded upon in the findings chapter.  

SoFVI on the other hand indicated that only 6.5% of the districts recorded a high SoFVI with 

Ketu South Municipal recording the highest index. The findings of SoFVI in this district align 

with prior studies about social flood vulnerability within this district which was also outlined 

in the prior chapter of this study. The study also revealed that the variable average 

household size had the strongest correlation with the index. 

Finally, after combining both indexes to derive the overall CFVI, Ketu South Municipality was 

the most vulnerable coastal district to floods within Ghana with an overall index of 3.9 which 

indicates a high vulnerability to floods. This outcome was supported by the findings of 

Babanawo et al. (2023) who assessed flood vulnerability within communities of this district. 

It was also revealed through the correlation of both indexes on the CFVI indicated that the 

SoFVI had a very strong linear relationship with the index which indicates that SoFVI 

influenced the outcome of the CFVI that the PhyFVI. 

Limitations 

This research can inform policymakers in the various coastal districts in Ghana on flood 

vulnerability and the factors behind it. The strength of this research is that it combines both 

the physical and social variables to assess flood vulnerability using the MCDA-based AHP 

model approach (Saaty, 1980) aggregated at a district level using the indicator approach. 

However, other scholars (Prama et al., 2020) have called for a more detailed assessment 

using hydrological flood modelling calibrated to the study area for a more detailed 

assessment of physical vulnerability. The indicator approach used for social flood 

vulnerability can be improved by using the latest socio-demographic datasets which at the 
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time of the research was unavailable for the last two years in Ghana. Another limitation of 

our AHP model is that the pairwise comparison was done based on what the author deemed 

more important when comparing the variables in the model.  

Recommendations 

For future studies, a hydrological flood model could be used to assess physical flood 

vulnerability of which the findings could be tested against the indicator-based physical 

vulnerability approach to see if there is a relationship between the two modelling 

approaches. In all, this model could be used by the government of Ghana and the various 

District Assemblies, NGOs, and other agencies in effective monitoring and mitigation 

strategies when it comes to flooding the coastal districts of Ghana. 
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Appendix 

 

Figure 7: Reclassified Landuse map 

 

Figure 8: Reclassified Slope map 
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Figure 9: Reclassified Elevation Map  

 

Figure 10: Reclassified Topographic Wetness Index Map 
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Figure 11: Reclassified Average Precipitation Map 

 

Figure 12: Reclassifed Drainage Density Map 
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Figure 13: Reclassified Number of Females Map 

 

Figure 14: Reclassified Average Household Size Map 



 

Page | 33  
 

 

Figure 15: Reclassified Age Dependency Map 

 

Figure 16: Reclassified Purchasing Power Per Capita Map 
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Figure 17: Reclassified Unemployment Rate Map 

 

Figure 18: Reclassified Number of Persons with No Health Insurance Coverage Map 
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Figure 19: Reclassified Number of Persons With Physical Disabilities Map 

 

Figure 20: Reclassified Number of Renter Occupied Households Map 
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Figure 21: Reclassified Number of People with Post-Secondary School Education Map 
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Data Description  

Elevation Name: Void-filled Digital Elevation Model of Africa  
Source: HydroSHEDS 
Date: 2008 
Datatype: Raster (GeoTIFF) 
Resolution: 3 arc-seconds 
Coordinate System: WGS84 
Link: https://data.hydrosheds.org/file/hydrosheds-v1-dem/af_dem_3s.zip 

Slope Name: Slope  
Source: Author 
Date: 2024 
Datatype: Raster  
Resolution: 3 arc-seconds 
Coordinate System: WGS84 
Measurement: Percent rise  

Districts Name: Ghana Districts 
Source: Ghana Statistical Service  
Date: 2021 
Datatype: Vector (.SHP) 
Geometry: Polygon 
Coordinate System: WGS84 
Link: https://statsbank.statsghana.gov.gh/assets/geofiles.zip 

Census Data 
 

Name: Population and Housing Census 2021 
Source: Ghana Statistical Service 
Date: 2021 
Datatype: CSV 
Link: https://statsbank.statsghana.gov.gh/pxweb/en/PHC%202021%20StatsBank/ 

Purchasing Power 
Per Capita Data 

Name: Purchasing Power Per Capita in Ghana 
Source: ESRI Demographics 
Date: 2023 
Datatype: Web Map 
Currency: Ghana Cedis 
Link: https://hub.arcgis.com/maps/esri::purchasing-power-per-capita-in-ghana/explore?location=5.656897%2C-
0.270050%2C9.06 

Precipitation Name:  Precipitation  
Source: WorldClim 
Date: 2020 
Datatype: Raster (GeoTIFF) 
Resolution: 30 arc-seconds 
Coordinate System: WGS84 
Link: https://biogeo.ucdavis.edu/data/worldclim/v2.1/base/wc2.1_30s_prec.zip 

Landuse Name: WorldCover V2 
Source: European Space Agency (ESA) 
Date: 2021 
Datatype: Raster (GeoTIFF) 
Resolution: 10m 
Link: https://viewer.esa-worldcover.org/worldcover/?language=en&bbox=-337.5,-
85.63546635050855,337.5,85.63546635050855&overlay=false&bgLayer=OSM&date=2024-05-
21&layer=WORLDCOVER_2021_MAP 

Topographic 
Wetness Index 
(TWI) 

Name: TWI 
Source: Author 
Date: 2024 
Datatype: Raster (GeoTIFF) 
Resolution: 3 arc-seconds 
Coordinate System: WGS84 

Drainage Density Name: Drainage Density 
Source: Author 
Date: 2024 
Datatype: Raster (GeoTIFF) 
Resolution: 3 arc-seconds 
Coordinate System: WGS84 

Table 7 Datasets used in this research. 

 

https://hub.arcgis.com/maps/esri::purchasing-power-per-capita-in-ghana/explore?location=5.656897%2C-0.270050%2C9.06
https://hub.arcgis.com/maps/esri::purchasing-power-per-capita-in-ghana/explore?location=5.656897%2C-0.270050%2C9.06
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Variable Reclassification Remark 

Landuse Tree cover – 1 
Shrubland, Grassland – 2 
Cropland – 3 
Mangroves, Built-up, Bareland – 4 
Permanent Water, Herbaceous Wetland – 5 

Lowest 
Low 
Moderate 
High 
Highest 

Slope 0%-10% - 5 
10%-20% - 4 
20%-30% - 3 
30%-40% - 2 
40%+ - 1 

Highest 
High 
Moderate 
Low 
Lowest 

Elevation (m) -28 to19.2 – 5  
19.2 to 43.6 – 4 
43.6 to 72.2 – 3 
72.2 to 105.1– 2  
105.1 to 337 – 1 

Highest 
High 
Moderate 
Low 
Lowest 

Topographic Wetness Index -6.5 to -3.9 – 1 
-3.9 to -2.8 – 2 
-2.8 to -1.5 – 3 
-1.5 to 0.3 – 4 
0.3 to 6.1 – 5 

Lowest 
Low 
Moderate 
High 
Highest 

Average Precipitation (mm) 67 to 90 – 1 
90 to 105 – 2 
105 to 122 – 3 
122 to 142 – 4 
142 to 165 – 5 

Lowest 
Low 
Moderate 
High 
Highest 

Drainage Density (km2) 1.5 to 4.9 – 5 
4.9 to 7.2 – 4 
7.2 to 9.8 – 3 
9.8 to 13.1 – 2 
13.1 to 18.0 - 1 

Highest 
High 
Moderate 
Low 
Lowest 

Table 8 Reclassification table of physical flood vulnerability variables 
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Variable Reclassification Remark 

Number of Females 1 = 30357 to 65707 
2 = 65708  to101057 
3 = 101058 to 136406 
4 = 136407 to 171756 
5 = 171757 to 207106 

Lowest 
Low 
Moderate 
High 
Highest 

Average Household Size 1 = 2.50 to 2.82 
2 = 2.82 to 3.14 
3 = 3.14 to 3.46 
4 = 3.46 to 3.78 
5 = 3.78 to 4.10 

Lowest 
Low 
Moderate 
High 
Highest 

Age Dependency Ratio 5= 110.191717 to 124.230752 
4= 96.152681 to 110.191716 
3= 82.113644 to 96.152680 
2= 68.074608 to 82.113643 
1= 54.035571 to 68.074607 
 

Highest 
High 
Moderate 
Low 
Lowest 

Purchasing Power Per Capita 5= 9459 to 12061 
4= 12062 to 13779 
3= 13780 to 16308 
2= 16309 to 21801 
1= 21802 to 27764 
 

Highest 
High 
Moderate 
Low 
Lowest 

Unemployment Rate 1= 10.400000 to 11.200000 
2= 11.200001 to 12.600000 
3= 12.600001 to 14.300000 
4= 14.300001 to 16.900000 
5= 16.900001 to 19.700000 

Lowest 
Low 
Moderate 
High 
Highest 

No Health Insurance Coverage 1= 21523 to 36622 
2= 36623 to 51992 
3= 51993 to 84797 
4= 84798 to 121139 
5= 121140 to 179053 

Lowest 
Low 
Moderate 
High 
Highest 
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variable Reclassification Remark 

Persons with Physical Disabilities 1= 5214 to 6374 
2= 6375 to 8799 
3= 8800 to 13446 
4= 13447 to 18368 
5= 18369 to 23755 

Lowest 
Low 
Moderate 
High 
Highest 

Renter Occupancy 1= 3344 to 5261 
2= 5262 to 10537 
3= 10538 to 20239 
4= 20240 to 29705 
5= 29706 to 51358 

Lowest 
Low 
Moderate 
High 
Highest 

Post Secondary School Education 1= 51971 to 85400 
2= 21953 to 51970 
3= 17889 to 21952 
4= 10573 to 17888 
5= 3560 to 10572 

Lowest 
Low 
Moderate 
High 
Highest 

Table 9 Reclassification table of social flood vulnerability variables 

 

 


