The relationship between house prices and *planned* demolition-anddevelopment or *planned* rehabilitation projects

The case of Paris, France

Jule Rüll s4141733

August 16th, 2024

Master Thesis 2023/2024 RUG Master's Program in Real Estate Studies

COLOFON

Title	The relationship between house prices and <i>planned</i> demolition-and-development or <i>planned</i> rehabilitation projects - The case of Paris, France
Version	Final Draft
Author	Jule Rüll
Supervisor	Arno van der Vlist, Shuai Fang
Assessor	
E-mail	j.rull@student.rug.nl
Date	August 16 th , 2024

ABSTRACT

A focal point of Parisian authorities is economic redevelopment to maintain affordable and appropriate housing despite remaining the most expensive housing market among European cities. Economic redevelopment includes two types of projects: rehabilitation, and demolition-and-development projects. Due to environmental transition demands, lower ecological footprint and declining costs, rehabilitation is incentivized instead of demolition-and-development. In essence, this study examines current house prices in relation to planned redevelopment projects in location of advocating neighbourhood quality. Four groups of neighbourhoods were examined which operationalize projects of planned rehabilitation, planned demolition-and-development, both transformations and no transformation within a 500-meter radius around each transaction, through a measurement of the Euclidean distance. The investigation of the hedonic price model reflects that planned redevelopment projects within a 500-meter radius associate with a 2.17% lower transaction price. Furthermore, through the distinction of transformations a positive significant association is observed between house prices and planned rehabilitation projects near to transactions. Transformations beyond the 500-meter radius from a transaction until the 1,000-meter range associates with a higher negative house price. Heterogenous outcomes are found between the twelve territories of the Greater Metropolitan Region in Paris, France in support of the diverse neighbourhood qualities in the study area.

Keywords: house prices, planned rehabilitation projects, planned demolition-and-development projects, neighbourhood quality, Paris

Master thesis includes preliminary materials to stimulate discussion and critical comment. The analysis and conclusions set forth are those of the author and do not indicate concurrence by the supervisor or research staff.

TABLE OF CONTENTS

COLOFON	. 2
ABSTRACT	. 3
TABLE OF CONTENTS	. 4
1. INTRODUCTION	. 5
1.1 Motivation	. 5
1.2 Academic relevance	. 6
1.3 Research problem statement	. 7
1.4 Outline	. 8
2. THEORETICAL FRAMEWORK	. 9
2.1 House prices	. 9
2.2 Planned redevelopment projects – rehabilitation and demolition-and-development 1	10
2.3 Theoretical predictions 1	12
3. DATA AND METHOD 1	15
3.1 Context	15
3.2 Descriptive analysis 1	16
3.3 Hedonic regression model	22
4. RESULTS	24
4.1 Multiple linear regressions	24
4.2 Robustness and heterogeneity	30
5. DISCUSSION	32
6. CONCLUSION AND REFLECTION	35
REFERENCES	37
APPENDICES	42

1. INTRODUCTION

1.1 Motivation

Paris has been a global city for centuries, leading to economic redevelopment as older properties are transformed through rehabilitation and demolition-and-development. The urban planner deputy, Emmanuel Gregoire, stated, 'in Paris, we no longer demolish, we transform' (Cazi, 2023). The current city's policies encourage the rehabilitation of buildings by restricting urban sprawl and incentivizing horizontal decentralization to effectively use the existing surface area (Lefebvre, 2021). Simultaneously, the city targets an ecological transition to provide a sustainable change in the housing stock as 85-95% of the current stock is predicted to remain standing in 2050 (Maduta et al., 2022). As of today, the building sector of France accounts for 28% of the greenhouse gas emissions (Lefebvre, 2021), foreseeing a relevance in sustainable rehabilitation, and change in real estate on an urban scale.

Rehabilitation considers improving the existing state of buildings through repairs, renovation or changing the purpose of properties to spark new interest (Buckley, 2012; Mayer, 1981). According to Buckley (2012), extensive rehabilitation and structural contributions can be obtained for a third less than the cost of demolition-and-development as well as the ecological footprint is assessed to be ca. 60% lower (Alba-Rodríguez et al., 2017), as demolition-and-development refers to the procedure of dismantling a building resulting in new constructions with potential new uses (Blanco, 2023).

The pivot of the analyses remains on planned redevelopments, substantiated by planned transformations of rehabilitation and demolition-and-development projects, as planned redevelopment project's objective is to improve the real estate stock and is likely to induce neighbourhood change (Kuiper, 2023). Local governments may instigate redevelopment in poor perceived neighbourhoods for place-based renewal policy implications (Rosenthal, 2008). Both transformations often initiate positive externalities to enrich the neighbourhood quality and appearances ultimately associated with house prices (Kuiper, 2023). Furthermore, a large share of housing in Europe is to ensure accessibility to affordable and appropriate housing to reduce socio-spatial polarisation in cities and strengthen social equality (Milovanović et al., 2022). The following research explores whether there is a relationship of house prices in proximity to planned transformations such as rehabilitation or demolition-and-development in Paris, France. This paper will amplify a connection between poor-quality neighbourhoods targeted by planned redevelopment projects relative to neighbourhoods in other territories and if it associates with house prices.

Parisian authorities are struggling to fulfil the accommodation needs of locals, in particular, offering affordable housing to low-income households. There are also undesired impacts of rehabilitation, mainly a rise in house prices caused by improving properties conflicting with current tenants or first-home buyers (Pipa et al., 2017), consequently, resulting in gentrification and an urban sprawl movement due to financial distress (Milovanović et al., 2022). Nevertheless, urban rehabilitation has raised in significance to maintain the vitality of historical

urban centres (Pipa et al., 2017). Rehabilitation, on the other hand, may lead to degrading historical areas due to orientation on urban recovery or converting areas to environments which lose its historical charm (Pipa et al., 2017). A focus has been on Haussmannian architecture which are an invaluable asset of Paris urban identity and distinctiveness (Cardoso, 2022). Particularly, incentive-based programmes have originated to prevent abandonment and lack of maintenance to preserve the building heritage.

1.2 Academic relevance

Previous research conducted comparative studies between rehabilitation versus demolition-and-development by considering economic and environmental impact assessments (Alba-Rodríguez et al., 2017). However, these indicators focus on the target properties and not the surrounding area. Other studies have analysed the relation of new constructions on nearby real estate in multiple cities such as Seville, in Spain (Alba-Rodríguez et al., 2017), Hong Kong (Liang et al., 2019), Helsinki, in Finland (Kurvinen & Vihola, 2016), and Chicago, in the United States of America (Zahirovich-Herbert & Gibler, 2014). A distinction of new construction types was also explored in association to targeted neighbourhoods based on their socioeconomic status.

Prior research has examined house prices change over time by post-redevelopment projects which have already been constructed and built in place. There is, however, a research gap regarding redevelopment projects in the pre-construction phase with implications on real estate prices of residential use. The studies of Liang et al. (2019) and Ki and Jayantha (2010) explored the impacts of urban redevelopment in different periodic phases on neighbourhood residential prices. The empirical results indicated a continuous response in neighbourhood housing prices prior redevelopment completion. Liang et al. (2019) focused on additional anticipatory psychological effects supported via the expectations of future advantages from urban redevelopment and influencing house prices.

For the last decades, literature reflected Parisian properties to be demolished and rebuilt instead of today's focal point which aligns with rehabilitation. Due to the absence of research, this paper seeks to discover planned redevelopment projects such as rehabilitation and demolition-and-development to associate with residential prices in the capital of France. However, project-specific Buckley (2012) analysed the relevance of rehabilitation instead of demolitions for the transformation of Bois-le-Pretre tower in Paris. Previous studies about Paris have focused on hedonic price models (Maurer et al., 2004; Bresson & Hsiao, 2011) or spatial analysis of housing inequality and Parisian housing market (Goix & Ysebaert, 2022; Nappi-Choulet & Maury 2011). Research has been conducted based on the influence of rehabilitation on the neighbouring transaction prices (Smith & Hevener, 2011; Ganduri & Maturana, 2022) while Zahirovich-Herbert and Gibler (2014) analysed the effect of new residential construction on house prices. Simultaneously, Bramley et al. (2007) conducted research on the impact of demolitions on nearby regions. Previously the focus of investigations has been on one or the other: rehabilitation or demolition-and-development. There remains an academic gap between using both redevelopment types, rehabilitation, and demolition-and-development, to evaluate residential prices in a research field. This paper analyses academic literature and interprets quantitative data in relevance for the case

study which raises the importance of planned demolition-and-development and rehabilitation projects in association to house prices in the twelve territories of the Greater Metropolitan Region of Paris.

1.3 Research problem statement

The research aim of this study is to associate planned rehabilitation and planned demolition-and-development projects with house prices in Paris. The outcome will contribute to the research gathered about the planned redevelopment projects in Paris in relation to transaction prices of housing. The research question consists of: *"To what extend do planned redevelopment projects associate with house prices?"*

Three sub-questions have been formulated:

1. What is the theoretical association between planned rehabilitation and planned demolition-anddevelopment projects and nearby house prices?

The first sub-question will analyse the theoretical view of the research question through investigating academic publications regarding the relationship between house prices and planned redevelopment projects. Prior research will help to identify residential price characteristics as well as distinguish between rehabilitation and demolitionand-development projects. Nevertheless, this study will focus on planned redevelopment projects, which seeks challenges due to limited studies anticipating relations between pre-construction projects and house prices. The findings of the association will be supported through existing studies and hypotheses will be established.

2. What is the quantitative relationship between planned rehabilitation and planned demolition-anddevelopment projects on nearby house prices in Paris?

This question will investigate the quantitative relationship of house prices and planned redevelopment projects, by distinguishing between planned rehabilitation and planned demolition-and-development projects. The public data source, Demandes de Valeurs Foncières (DVF) (2023), will reflect on the house prices through transaction data from the third quarter of 2018 to second quarter of 2023. The data from DVF is the basis for the analysis, with information on the prices, addresses and housing characteristics. While APUR is an open data platform publishing data among a variety of themes and simultaneous referenced in a GeoCatalogue. APUR (2023) offers an insight of planned demolition-and-development projects as well as planned rehabilitation projects in Paris including a distinction whether new constructions were housing or implied other uses.

3. What are the differences across the territories in Paris?

The Greater Metropolitan Region of Paris is divided into twelve territories which consist of four departments plus seven communes. These will be explored to assess heterogeneity of house prices across the observations in proxy to planned redevelopment projects. The variability of outcomes may be devoted to the type of redevelopment projects or distance to transactions. Nevertheless, there might be potential differences between the territories as the neighbourhood quality can be perceived differently due to physical and social attributes and infiltrate the housing market.

1.4 Outline

The consecutive order of the paper consists of a total of five sections. Section 2 explains theories of existing academic literature to explain the connections within the topic discussed. Section 3 describes the methods used for the data collection, while section 4 presents the results and follows up with a discussion in section 5. At last, section 6 consists of a conclusion and a reflection.

2. THEORETICAL FRAMEWORK

2.1 House prices

The house prices are acquired through the correspondence of housing supply and demand elasticity, and interactions between attributes of the targeted property and neighbourhood quality (Fingleton, 2008; Mulder, 2006; Rosen, 1974). Prior literature on hedonic pricing in the residential market have shown a strong relationship between the price and property characteristics, emphasizing on size, location and property type (Beimer & Maennig, 2020). The upscaling of property size, determined through the number of rooms or square meters, implies a correlation to an increase in house prices (Li et al., 2014; Nappi-Choulet & Maury, 2011; Wilhelmsson et al., 2021).

Location seems to matter for the transaction as highlighted by the preference for housing near central locations (Wheaton & Nechayev, 2005; Nappi-Choulet & Maury, 2011). Following the urban rent theory and the centreperiphery gradient, housing values diffuse with distance from the city centre to the suburbs (Evans, 2004; Goix & Ysebaert, 2022). The supply price elasticity is strongly influenced by geographical constraints resulting in demand shocks (Hilber, 2017). This cements that prices within the city are higher than in the outskirts (Teng et al., 2016; Oueslati et al., 2015). As housing scarcity is indefinite through extensive restrictions in urban land use and urbanization (Glaeser & Gyourko, 2018), a forthcoming result is constructing space efficiently via rehabilitation or demolition-and-development. Despite the transformations, there is an increasing demand for apartments in the urban housing market and induced higher prices. In contrast to previous research, McMillen (2008) observed that the type of housing nor location affects the change in the price distribution. Instead, the appreciation for higher priced homes is used as a determination.

It is challenging to disentangle the association of property attributes from the neighbourhood quality on house prices. The quality of neighbourhoods capitalizes house prices, fundamentally caused by differences in local attributes. There are constant fluctuations in urban areas through contributions of attributes, which may result in changes in perceived neighbourhood quality (Liu & Wang, 2014). The neighbourhood characteristics can consequently impact sorting by income or social capital as people tend to lean towards living in neighbourhoods based on their affordability and classification (Hilber, 2017). The most affluent households can afford to live in the highest amenity locations, generating positive externalities within the neighbourhood. The association for the prices to increase is through the attractiveness of the positive externalities, such as green spaces, exterior aesthetics, availability or distance to amenities (Daams et al., 2016; Hilber, 2017; Maurer et al., 2004).

The poor perceived neighbourhood quality may be attributed to the physical environment (e.g. lack of infrastructure, urban design, environmental disorder) as well as the social attributes (e.g. inequality in wellbeing, perceived safety, stigmatization) (Mouratidis, 2020). The lack of available characteristics captivates house prices negatively as well as influences the household's marginal willingness to pay to live in certain neighbourhoods (Hilber, 2017; Barreca et al., 2020). The poor-quality neighbourhoods tend to associate with lower demand, as households prioritize to live near better attributes including higher capital values equalizing to higher neighbourhood quality. In contribution, Leonard et al. (2016) operationalized appraisal values as a measure of neighbourhoods. The results indicate interdependence of higher (lower) house prices in neighbourhoods of better (poorer) condition and vice versa.

2.2 Planned redevelopment projects – rehabilitation and demolition-and-development

Throughout the last decades, there has been a change of emphasis from new constructions to maintenance and rehabilitation within Europe (Balchin, 2004). Rehabilitation involves physical adjustments to improve property conditions (Hauge et al., 2012). Particularly, France has strongly implemented the task of tackling urban decay since the 1970s. Parisian properties focus on rehabilitation for the purpose of space constraints and to establish the highest and best use for existing properties while supporting the growth of the housing sector (Buckley, 2012; Tardiveau, 2020). This shift also proved to be more cost-effective at least in the short run (Balchin, 2004). In recent years, properties partly require rehabilitation to reach quality standards and to settle construction deficiencies, for instance, by upgrading poor insulation.

Despite rehabilitation being a focal point of modern urban areas, demolitions are still heavily relied upon. Demolition is commonly used to describe the process of dismantling a property due diligence in safety and health and disregards redevelopment (Paredes & Skidmore, 2017). However, for this study, demolition-and-development refers to the procedure to remove a structure and to redevelop a project for further improvements or a new use (Blanco, 2023). As reconstruction is included within the projects facing demolition-and-development, there is a distinction between a new construction of a building and the creation of non-built space. This space may evolve into infrastructure or a public open space such as a park/recreation area, which may lead to a positive association on property values when the area is valued as an attractive space (Daams et al., 2016).

Based on previous studies, redevelopment projects tend to occur in neighbourhoods with stagnant or declining income, population, or property prices (Weber et al., 2006). This presents the relationship between poor neighbourhood qualities and planned redevelopment projects. By the distinction of redevelopment projects, rehabilitations fail to relate to low socioeconomic status, as a high tendency is recorded to be near affluent neighbourhoods such as those in the city centre (Bogin & Doerner, 2019). Simultaneously, disinvested neighbourhoods of older housing stock often initiate redevelopment projects which may result in an influx of affluent households upholding socioeconomic status in comparison to previous residencies to improve neighbourhood quality (Rosenthal, 2008; Weber et al., 2006; Turnbull & Vlist, 2023). The results from Brunes et al. (2020) replicates the scenario and found that it leads to positive spillovers on house prices in proximity to development projects with the specification of areas with residents with low income, immigrants, and a relatively high number of nearby social housing. This process initiates gentrification which may imply costs and pressure on vulnerable residents such as families or elderly relying on low fixed income (Wilhelmsson et al., 2021; Zapatka & Beck, 2020). The loss of affordable housing contributes to displacement and changing neighbourhoods' quality through cultural and socio-economic intrusion.

2023/2024

Prior research identified positive and negative externalities initiated by redevelopment projects, particularly, externalities derived by reconstructions, within a 400-meter radius (Zahirovich-Herbert & Gibler, 2014). The spillover effects vary strongly based on the distance to redevelopment projects. As redevelopment projects improve the standard of property sites, the projects attract opportunities, which contribute to creating a more vibrant, safe and healthy neighbourhood (Kurvinen & Vihola, 2016). Planned redevelopments will incentivize positive externalities and improve the city's appearance as well as enhance the living quality of the neighbourhood (Liang et al., 2019). Projects that enrich neighbourhood quality may improve the values of nearby residential real estate. Nevertheless, planned redevelopment projects establish uncertainties as these projects are forsaken to be set in the future. As there is an absence of investigations involving planned redevelopment projects, research regarding completed projects are used as a guidance. Planned projects shall apply similar externalities in the future in alignment with completed projects as well as generate positive benefits before completion through expected advantages. The study by Liang et al. (2019) discovered the effect of urban redevelopment on house prices in the promotion/review phase was higher than in the implementation/completion phase. As there is a continuous reaction in house prices prior to the completion of redevelopment projects, it implies the expectation that future benefits will outweigh external costs leading to an increase in prices (Liang et al., 2019).

Rehabilitation or demolition-and-development may temporarily lower the nearby housing values based on the process of construction. Zahirovich-Herbert and Gibler (2014) found that house prices may endure a reduction, when comparable sized houses are newly constructed nearby resulting in competition by contributing to the housing stock even though demand remained constant. The effects of construction noise pollution on residents were examined by Ng (2000) and the results reflected negative effects of severe significance for residents closest to construction sites such as distractibility, interference with communication and relaxation. Residents evaluated construction noise to be among the most unpleasant noises. Further negative externalities involve the creation of an undesirable environment, road detours, exhaust fumes, and unsightly views, such as steel frames and construction vehicles (Turf Factory Direct, 2021). These perceptions of inhabitants about construction sites have led to a lower demand and willingness to pay for housing near development projects (Zahirovich-Herbert & Gibler, 2014). According to Whitehead et al. (2015), development projects during the construction phase led to a decline in nearby house prices, but the prices recovered quickly upon completion. Transaction prices particularly increased when the area was in poor condition before the development procedure. As a contribution, distressed properties which executed rehabilitation generate beneficial spillovers to raise neighbouring house prices (Ganduri & Maturana, 2022). As to the analysis from Smith and Hevener (2011), rehabilitation raised the median sales price in the target region and generated positive influence on the neighbourhood. After Kurvinen and Vihola (2016) found an immediate positive 2.6% impact on house values within one year after the development is completed, then prices tend to depreciate at a rate of 0.5% per year thereafter. Particularly, supply constraints resulting from physical land scarcity leads to less depreciation and apartments tend to depreciate faster than non-residential real estate. Bokhari and Geltner (2016) acknowledged that depreciation rates vary across the metropolitan area and future-oriented redevelopment projects occur unevenly across urban areas (Turnbull & Vlist, 2023).

Initial effects might be more negative through impacts from demolitions (Bramley et al., 2007). Regarding Yin and Silverman (2015), demolished properties have no significant impact on house transaction prices for the years before or after massive demolition effort. However, the study from Yin and Silverman (2015) only engages with demolitions and the removal of abandoned properties based on deterioration, health, and safety measures. The study does however exclude redevelopment, which in most cases is the essence of positive externalities on house prices and neighbourhood quality.

2.3 Theoretical predictions

The conceptual model in figure 1 describes the relationship of planned redevelopment projects in proximity to residential transaction prices. The characteristics of the planned projects are included to furtherly distinguish between the type of redevelopment such as rehabilitation or demolition-and-development. The control variables reflect housing characteristics plus location and time effects. For house characteristics, it is common within hedonic models to include size which refers to the surface area and number of rooms (Maurer et al., 2004). The location and date of transaction is also stated (Rosen, 1974), while there is a distinction between apartments and single-family houses (Gouriéroux & Laferrère, 2009; Bresson & Hsiao, 2011). The location effect is relying on the territories of the Greater Metropolitan Region of Paris while the time effect considers the transaction year of the real estate.

Based on the previous theoretical findings, a conceptual framework was developed as referred to below:

Planned redevelopment projects

Figure 1. Conceptual model

The previous aspect of the theoretical framework included hedonic literature about house prices being associated with rehabilitation and demolition-and-development in Paris. Therefore, the following hypotheses were formulated.

Hypothesis I: There is a higher association between house prices and near planned redevelopment projects rather than between house prices and far from planned redevelopment projects.

Studies show a positive association after the completion of development projects on house appraisal values or transaction prices in near circumference (Kurvinen & Vihola, 2016; Brunes et al., 2020). It implies for planned redevelopment projects to contribute future benefits to the neighbourhood quality, which may result in an association of house prices prior to the completion of redevelopment projects (Liang et al., 2019). The positive and negative spillover effects vary through the distance between new construction and existing residential real estate but were strongly acknowledged in a 400-meter radius (Zahirovich-Herbert & Gibler, 2014). For instance, redevelopment projects in prosperous neighbourhoods have a positive relation with existing house prices. However, research of Kurvinen and Vihola (2016) reflect a disappearing relation, beyond a radius of approximately 92 meters of redevelopment projects on neighbourhood quality and house price. The investigations imply a higher interrelation with residential prices near planned development projects, while the association diminishes as distance increases. The radius differences per investigation seeks evaluations. On the contrary, findings from Yin and Silverman (2015) have found no significant association between development projects and house prices.

Hypothesis 2: The house prices near planned rehabilitation projects are higher than the house prices near planned demolition-and-development projects.

Kurvinen and Vihola (2016) discovered a positive relation of single-family house values based on new development projects and rehabilitation. However, real estate prices tend to have a lower association with rehabilitations in comparison to demolition-and-developments as properties enduring rehabilitation face less adjustments. Through less alterations, neighbourhood qualities are less provoked for change and therefore, associate less with house prices nearby. However, poor quality neighbourhoods with distressed properties which face rehabilitations generate beneficial spillovers to incline neighbouring residential real estate prices (Ganduri & Maturana, 2022). As to the findings from Smith and Hevener (2011), rehabilitation raised the median house price in the neighbourhood. Particularly, gentrified areas experience an influx of property prices through the implication of rehabilitation or demolition-and-development (Wilhelmsson et al., 2021). According to Bramley et al. (2007), there is larger negative influence on house prices from demolitions than new house constructions. Demolition-and-development projects are infiltrated through clear demolition activities leading to factors such as noise annoyance and dust disruption (Turf Factory Direct, 2021). These negative externalities result in impacting the surrounding area to be less strongly correlated as the less construction intensive procedures, as

these procedures impact the house prices. The planned projects may exert a foreseeable influence on house prices based on the registered redevelopment type.

Hypothesis 3: The association between planned redevelopment projects and house prices differs across the twelve territories.

Within the fundamentals, location does seem to matter for depicting house values (Wheaton & Nechayev, 2005). The distinction of house prices between the territories in the Greater Metropolitan Region of Paris is based on the administrative geographical structure formed in 2016 for collaboration between the city of Paris and its nearest suburbs. According to Teng et al. (2016), the housing values diffuse from the city centre to the suburbs meaning the prices descend with distance away from the city centre (Oueslati et al., 2015). Considering territory T1, city centre of Paris, there is a higher demand, higher space constraints than in the surrounding territories which may affect the house price differently across the various territories. Furthermore, the neighbouring quality tends to differentiate across the study area, which may associate to variations among residential prices (Weber et al., 2006). Especially, poorly perceived neighbourhoods are attractive for planned redevelopment projects (Rosenthal, 2008), creating positive and negative externalities associated to house prices. To explore whether this is the case, the third hypothesis is formulated regarding heterogeneity across the geographical territories.

3. DATA AND METHOD

3.1 Context

This research considers house prices being associated with planned redevelopment projects in the twelve territories of the Greater Metropolitan Region of Paris, France. The Greater Metropolitan Region of Paris is home to 7.08 million inhabitants, facing a steady population incline over time except for T1 Paris (APUR, 2018). As Parisians have been relocating to suburbs beyond the city centre (Jabot, 2023), T1 Paris has been slowly losing inhabitants due to the high living cost and space constraints in the centre of Paris (Global Property Guide, 2023). The research area consists of four departments in the Greater Metropolitan Region of Paris: Paris (75), Hauts-de-Seine (92), Seine-Saint-Denis (93), and Val-de-Marne (94), including seven communes.

Figure 2. Map of study area distributed in the twelve different territories (APUR, 2023).

2023/2024

The study area is especially insightful to be investigated due to the correlation of planned redevelopment projects occurring in lower median income neighbourhoods, when the income of a neighbourhood inclines the number of projects tend to lean to a negative correlation. While regions of lower income households can be associated with neglected neighbourhood qualities as income or social capital relates to the availability of social or physical attributes of a neighbourhood (Hilber, 2017). As of figure 2, it indicates the frequency of planned redevelopment projects in the depicted IRIS geographical regions while Appendix D offers an overview of households with lower median income. The patterns between these two maps align with similarities, it may be concluded that in Paris, planned redevelopment projects tend to resign in areas that associate with poorly perceived neighbourhood quality. Nevertheless, poor neighbourhood quality interconnects with lower house prices. This may eventually explain the lower transaction prices in proximity to planned redevelopment projects. For instance, the regions with the majority of planned redevelopment projects are reflected in T6 Plaine Commune, T7 Paris Terres d'Envol, T8 Est Ensemble, in the north and T12 Grand-Orly Val-de-Bievre Seine-Amont in the south. In comparison to Appendix D, the two lowest categories of median declared income ranging from 6,870 and 27,620 are identified in the same regions as to where the frequency of planned projects is the highest (as seen in figure 2).

This study distinguishes between four groups of neighbourhoods which are infiltrated through housing transformations and may operationalize the nearby residential real estate price. These four groups distinguish through different compositions of planned redevelopment projects, which take place within a neighbourhood that is defined as the target and control area. The target area equivalates to a 500-meter radius to the transaction, while the control area replicates the range from 500-meters to 1,000-meters to the house price. These planned projects exist of demolition-and-development and rehabilitation. The four groups consist of: i.) no planned transformations, this option exists of neighbourhoods which have no redevelopment projects planned; the category, ii.) planned demolition-and-development projects, focuses only on neighbourhoods which have demolition-and-development projects planned in the future; on the other hand, iii.) planned rehabilitation projects, states the neighbourhoods with planned rehabilitation projects in the near circumference; while the last category, iv.) both planned transformations, relies on planned demolition-and-development and rehabilitation projects to occur in the neighbourhood.

3.2 Descriptive analysis

This research explores the relationship between house prices and two types of planned redevelopment projects: i.) demolition-and-development projects, and ii.) rehabilitation projects. The data comes from two sources: real estate transaction data is accessible from the platform of Demande de Valeurs Froncieres (DVF), and the planned projects are available through the GeoCatalogue from the platform of Atelier Parisien d'Urbanisme (APUR). The variables obtained from the datasets are shown in the descriptive statistics table 2 and 3.

The data from DVF offers sale transactions between the years of 2018 3rd quarter to 2nd quarter of 2023 in France. At first, the dataset was modified to append the different files per year into one. Then only the data was

kept of the Greater Metropolitan Region of Paris, therefore, 1,314,984 observations remain. These observations lie within the geographical borders of the four departments: Paris (75), Hauts-de-Seine (92), Seine-Saint-Denis (93), and Val-de-Marne (94) including seven further communes which are part of the region since January 1st, 2016. The extracted data includes the context of the house transaction prices, transaction date, type of housing, location, surface area (m^2) , and number of rooms. The location is determined through the latitude and longitude coordinates.

Furthermore, data cleaning and selection led to a higher accuracy and removal of errors based on a reduction of observations. An overview of the commands applied on the individual datasets is shown in table 1. Particularly, removed observations were categorised as industrial and commercial premises within the type of property variables. So only residential properties were included in the dataset described as single-family houses or apartments. Then observations were dropped, which had missing values for the variables: transaction price, transaction date, location, surface area (m^2) , and number of rooms.

Data	Command	Description	Observations	Removal	Remain
Transaction	Select	Study area	19,765,458	18,450,474	1,314,984
data from	Drop	Missing values of extracted variables	1,314,984	723,614	591,370
DVF	Select	Residential properties			
	Drop	Multi complex building of apartments	591,370	114,042	477,328
	Drop	Bottom and top 1% tier of transaction price	477,328	9,542	467,786
	Drop	Outliers above 99.9% percentile of rooms	467,786	237	467,549
Planned	Drop	New construction of un-built space (e.g.	9,328	1,107	8,221
redevelopment		parks, open public spaces)			
projects from	Drop	Missing values	8,221	270	7,951
APUR					
Planned	Merge	Dataset of planned redevelopment projects	473,333	5,784	467,549
redevelopment		and transactions			
projects near	Drop	Not matched based on coordinates missing	467,549	2,494	465,055
transactions	Drop	Distance further than 1,000 meters	465,055	116,776	348,279

Table 1. Data cleansing and selection of data

A few observations explicitly stated the existence of gardens on the property terrain. However, the data platform gave these gardens based on the large size their own individual observation with duplicated transaction IDs. To remove duplicates, the observations of non-residential properties such as gardens were deleted. Furthermore, a few observations were identified with identical transaction ID's, which equivalate to buildings sold for a total price including multiple apartments within the building. As there is a lack of specification on how much the transaction price is per apartment, the buildings are removed from the dataset. To further improve the data distribution, observations in the top and bottom 1% tier were removed of the variable: transaction price. Furtherly, the outliers above the 99.9% percentile within the field of number of rooms are removed. Therefore, 467,549 observations remain to investigate the residential transaction prices in Paris.

2023/2024

Secondly, the data of APUR is incorporated in the analysis as it identifies existing buildings that will be transformed by rehabilitation or demolition-and-development. A total of 9,328 buildings were intended to be fully transformed between the years of 2018 and 2050 within the study area. The data was published in the 1st quarter of 2023. The extracted variables are the type of redevelopment projects, new construction type, estimated completion year and location of the project. The location is available through the x and y coordinates. This research will focus on residential buildings and therefore, projects that align with developments of parks, open public spaces are removed from the data. To conclude 7,951 planned projects, remain, after dropping cases for which information on the extracted variables are missing or referred to constructions of un-built space. The targeted projects persist in the planning phase and were estimated to be completed post data publication in the years of 2023 to 2050.

The two datasets were combined to obtain information on the distance between the transaction prices and the planned redevelopment projects via measuring the Euclidean distance. These nearby distances created their own unique identifier, FID, which made it possible for a merge between the two datasets. The merge led to a total number of 473,333 observations. It turns out a few observations from the house transaction dataset were not matched as the coordinates were missing. To proceed two ranges were formed, through identifying the target area with a radius of 500 meters, and between the ranges of 500 to 1,000 meters. All the observations which exceed the range of 1,000 meters were eliminated which led to a remaining number of 348,279 observations for the analysis.

The descriptive statistics of the projects which are within a 500-meter radius to the transactions are shown in table 2. There is a distinction of four models each covering different total number of observations. The model (1) focuses on the outcome of both planned redevelopment types to be occurring simultaneously within the 500-meter radius. Model (2) establishes the planned redevelopment project type: demolition-and-development. Model (3), on the other hand, describes planned rehabilitation projects. The model (4) explains the outcome of all the planned redevelopment projects which are not within a 500-meter radius to transaction. The transaction price is listed as a continuous variable, same as the surface area. The housing type is determined through a binary variable between a single-family house [1] and an apartment [0]. The number of rooms within the unit are shown categorically ranging from 0 [studio] to 9 rooms. The year of transaction is ranging from 6 dummies each referring to a year between 2018 and 2023. Furthermore, there is a distinction of twelve territories where T1 Paris shows the highest percentage of transactions occurring in that field ranging from 22.4% to 52.3% depending on the planned redevelopment project. As most properties are identified in the city centre, it may not be surprising that the majority of properties are apartments while only 10.0-13.2% are single-family houses.

Table 2. Descriptive statistics c	of transactions	near to planned	redevelopment pr	ojects - withir	1 500-meters	-		
			(2)	Ċ	(0) (0)	ť	(4)	÷
Variables	Mean	St. dev.	Mean	St. dev.	Mean	St. dev.	Mean	St. dev.
Activity (near: 500 m)								
Transaction price	327083.6	250172	388396.5	276030	523325.1	443939.3	454288.8	346108.6
Single-family house [yes = 1]	.111115	.3142772	.1233382	.3288263	.0998458	.2998031	.1324423	.3389721
Surface area	57.16416	27.65153	58.93078	30.78764	60.88271	35.64977	60.55338	33.89249
Number of rooms								
0	.0006304	.0251009	.0006672	.0258224	.0009492	.0307957	.0006864	.0261909
1	.1538973	.3608535	.155699	.3625713	.2049122	.4036494	.17085	.3763791
2	.2859219	.4518563	.2892792	.4534297	.2671452	.4424819	.2787297	.4483757
ω	.2998441	.4581935	.3009391	.4586682	.2598481	.4385641	.2856134	.4517076
4	.184246	.3876881	.1718628	.3772627	.1685453	.3743609	.1688555	.3746254
5	.0589461	.2355259	.0582912	.2342943	.0732084	.2604859	.0653858	.2472061
6	.0123811	.1105805	.0162138	.1262974	.0182724	.1339388	.0203986	.1413601
7	.0029946	.0546413	.0047207	.0685451	.0049241	.0700008	.0066571	.0813192
8	.0008056	.0283712	.0016848	.0410115	.0013052	.0361047	.0021176	.0459685
9	.0003327	.0182381	.0006422	.0253339	0008899.	.0298186	.0007059	.0265587
Transaction year								
2018	.1126736	.3161961	.1094097	.3121538	.1107617	.3138462	.1099714	.3128551
2019	.2190603	.4136132	.2228478	.4161587	.2182606	.4130775	.217346	.4124413
2020	.1909532	.3930557	.194924	.3961439	.1740033	.3791236	.1843131	.3877406
2021	.2099539	.407279	.201513	.4011319	.2011747	.4008902	.2036433	.402708
2022	.1940704	.3954868	.1957497	.3967784	.2100736	.4073727	.2024258	.4018092
2023	.0732886	.2606119	.0755559	.2642873	.0857262	.2799675	.0823004	.2748228
Territories								
T1 Paris	.2244541	.4172259	.2495037	.4327276	.5236118	.499457	.3791299	.4851721
T2 Vallée Sud Grand Paris	.0087911	.0933488	.1095932	.3123833	.0064072	.0797906	.0746914	.2628936
T3 Grand Paris Seine Ouest	.0256554	.1581064	.0381658	.1915971	.0577836	.2333407	.0683128	.2522827
T4 Paris Ouest La Défense	.068105	.2519282	.0792173	.2700788	.0899383	.2861018	.0836539	.2768689
T5 Boucle Nord de Seine	.0920792	.2891403	.0620444	.2412372	.0198149	.1393679	.0667651	.2496156
T6 Plaine Commune	.1895522	.3919501	.0589751	.2355791	.0001187	.0108924	.0017485	.0417781
T7 Paris Terres d'Envol	.0582456	.2342094	.0407763	.1977725	.0750475	.2634757	.0338099	.1807403
T8 Est Ensemble	.1673117	.3732572	.0519608	.2219489	.0183318	.134152	.0416456	.1997787
T9 Grand Paris - Grand Est	.0527818	.2235996	.0487247	.2152929	.0587328	.2351309	.0634495	.2437705
T10 Paris-Est-Marne & Bois	.0220304	.1467835	.1034463	.3045421	.0344684	.1824345	.0801116	.2714668
T11 Grand Paris Sud Est	.0241844	.1536226	.0358805	.1859929	.0304343	.1717841	.0366593	.1879245
T12 Grand-Orly Seine Bièvre	.0668091	.2496933	.1217118	.326954	.0853109	.279352	.0700224	.2551856
Observations		57,103		119,898		16,856		154,422
Notes: Columns – 1: Both planned transfo	rmations; 2: Planne	d demolition-and-dev	velopment; 3: Planned re	habilitation; 4: No J	olanned transformat	ion		

Table 3. Descriptive statistics o	f transactions fa	ar from planne	d redevelopme	ant projects -5	00 to 1,000-me	sters		
			- 5	;	(<u>(</u>) ;	Ţ	;	ť
Variables	Mean	St. dev.	Mean	St. dev.	Mean	St. dev.	Mean	St. dev.
Activity (far: 500 to 1,000 m)								
Transaction Price	367370.1	282183.1	422760.8	304615.9	588313.3	468182	481718.6	383439.6
Single-family house [yes = 1]	.1269408	.3329078	.1341449	.340809	.0803793	.2718855	.0753592	.2639765
Surface area	56.91691	29.78037	61.11864	32.47097	60.92901	37.97806	62.5305	34.77084
Number of rooms								
0	.0006052	.0245936	.0006192	.0248762	.0013736	.0370378	.0009774	.0312492
1	.1669542	.3729363	.1539843	.3609348	.2207107	.414735	.168312	.3741523
2	.2948272	.4559666	.2715592	.4447651	.291519	.454472	.2804711	.4492404
	.2937072	.455461	.2991325	.4578794	.2382134	.4259998	.2826214	.4502849
4	.1669055	.3728928	.1806535	.384732	.1475541	.3546652	.173248	.3784708
5	.0571262	.2320843	.0649362	.246414	.0713843	.2574713	.0672466	.2504547
6	.014372	.119019	.0196412	.1387645	.0213134	.14443	.0190597	.1367383
	.0039304	.0625696	.0063964	.0797216	.0060262	.0773963	.0055713	.0744348
8	.00112	.0334475	.0022911	.0478103	.001285	.0358247	.0018082	.0424859
6	.0004522	.0212595	.0007864	.0280317	.0006203	.0248996	.0006842	.0261488
Transaction year								
2018	.1118454	.3151772	.1098534	.312708	.1084722	.3109827	.1042909	.305645
2019	.2168596	.4121076	.2215459	.4152883	.2141528	.4102424	.2289121	.4201428
2020	.1870861	.389982	.1903874	.392608	.1774637	.3820691	.1966572	.3974807
2021	.2072458	.4053346	.2021709	.4016203	.2036955	.4027541	.1929919	.3946563
2022	.1997816	.3998375	.1969944	.3977293	.2103421	.4075606	.199003	.3992601
2023	.0771815	.2668802	.0790479	.2698144	.0858738	.2801838	.0781449	.268406
Territories								
T1 Paris	.3142635	.4642235	.2718007	.4448891	.5962425	.4906608	.3702962	.4828958
T2 Vallée Sud Grand Paris	.0202233	.1407605	.1293956	.3356383	.0058047	.0759687	.0659271	.2481607
T3 Grand Paris Seine Ouest	.0273318	.1630489	.0537162	.2254574	.1539348	.3608942	.0726224	.2595221
T4 Paris Ouest La Défense	.0730285	.2601843	.0836858	.2769168	.0643832	.2454397	.1150914	.31914
T5 Boucle Nord de Seine	.0814597	.2735408	.0688062	.2531251	.0008419	.0290039	.0244355	.1544008
T6 Plaine Commune	.1162627	.3205408	.0089599	.0942321	.0003102	.0176094	0	0
T7 Paris Terres d'Envol	.056994	.2318319	.0293566	.1688045	.0445764	.2063764	.0371909	.1892339
T8 Est Ensemble	.1310034	.3374052	.0189291	.1362753	.0020383	.0451023	.0287851	.167206
T9 Grand Paris - Grand Est	.0592757	.2361408	.058546	.2347737	.0321251	.1763363	.0460854	.2096752
T10 Paris-Est-Marne & Bois	.026657	.1610795	.1270921	.3330772	.023263	.1507411	.0845958	.2782861
T11 Grand Paris Sud Est Avenir	.0250918	.1564046	.040911	.1980846	.0396136	.195054	.0366044	.1877932
T12 Grand-Orly Seine Bièvre	.0684095	.2524482	.1088008	.3113901	.0368664	.1884378	.1183658	.3230486
Observations		143,752		161,497		22,568		20,462
Notes: Columns -1 : Both planned transfor	mations; 2: Planned	demolition-and-dev	elopment; 3: Planne	ed rehabilitation; 4:	No planned transfor	mation		

s4141733

The table 3, shows the descriptive statistics of the redevelopment projects being far from transaction prices in the range between 500 to 1,000 meters. The frequency of planned redevelopment projects is distinguished between near (500-meter) and far (500 to 1,000-meters) from $property_i$. Furthermore, the descriptive statistics of the planned redevelopment projects are portrayed as pooled, differentiate between rehabilitation and demolition-and-development, and no transformations. There is a larger quantity of planned demolition-and-development projects recorded in this study than rehabilitation projects based on the total observations. The most common number of rooms per property is three with the exception for properties far from both transformations, and planned rehabilitation projects at both ranges as these properties tend to commonly have two rooms. In addition, the most transactions were completed in the year of 2019.

Table 4. Correlation matrix

VARIABLES	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Transaction price (1)	1.0000							
Near pl. projects (2)	-0.1466**	1.0000						
Far pl. projects (3)	-0.1486**	0.0788**	1.0000					
Single-fam house (4)	0.1363**	-0.0212**	0.0362**	1.0000				
Surface area (5)	0.6401**	-0.0376**	-0.0579**	0.3915**	1.0000			
Number of rooms (6)	0.5030**	-0.0056**	-0.0144**	0.4112**	0.8595**	1.0000		
Transaction year (7)	0.0578**	-0.0136**	-0.0019	0.0010	-0.0141**	-0.0136**	1.0000	
Territories (8)	-0.2904**	0.1285**	0.0606**	0.2507**	0.1247**	0.1746**	-0.0312**	1.0000
*D <0.05 **D <0.01								

*P<0.05; **P<0.01

The table 4 indicates the correlation between the variables in the analysis. If the correlation coefficient is equal to 0, it indicates no linear correlation, while the value equalling to 1 shows a linear correlation between two variables. The matrix shows a correlation between *surface area* and *number of rooms* by 0.8595, which indicates a strong positive correlated relationship. More surface area is strongly related to higher number of rooms. As these two independent variables are highly correlated, it may lead to an issue of multicollinearity. Nevertheless, this incident was expected as both variables identify the size of the property. Both variables: *surface area* and *number of rooms* indicate a strong positive correlation to the transaction price, noted in this condition when property increases in size it relates to higher transaction prices.

There is a negative correlation between the *transaction price* and variables related to the frequency of planned *near* and *far projects* to residential transactions. The negative correlation shifts to a stronger relationship from -0.1466 to -0.1486, when the buffer shifts from 500-meters radius to ranges of 500 to 1,000 meters, which has also been associated with more planned projects being recorded within that area (500-to-1,000-meter range). Meaning the transaction price is associated with a negative correlation when the frequency of redevelopment projects increases within the range. The values were significant at a p-value of 0.01. Other relationships are significant; however, these correlations are not as strong and studying these effects would be beyond the scope of this research.

3.3 Hedonic regression model

To pinpoint the interconnection of planned redevelopment projects on house transaction prices, a hedonic price model is explored. It supports the investigation through identifying whether the price associates with planned rehabilitation and demolition-and-development projects in defined regions. Therefore, the following equation is determined:

$$\ln P_{ijt} = \alpha + \beta_1 P lanned \ demolition \ and \ development_j + \beta_2 P lanned \ rehabilitation_j$$

$$+ \beta_3 Both \ planned \ transformations_j + \gamma \ X_{ijt} + \varepsilon_{it}$$

$$1$$

Where $log(P_{iit})$ reflects the natural logarithm of the transaction price of property_i in a geographical area and in transaction year. The transaction of property i was conducted before the completion of redevelopment projects. Planned demolition and development $_{i}$ is a variable indicating the planned demolition-and-development projects in distance to $property_i$, the target area represents a radius of 500 meters to property_i and the control area identifies within the range of 500 to 1,000 meters. *Planned rehabilitation*_i is a variable which refers to the planned rehabilitation projects near to property_i (500 1,000-meter (500-meter radius) or far from $property_i$ to range). At last, the Both planned transformations, addresses both planned demolition-and-development and rehabilitation projects taking place within the target or control area. X_{iit} show a set of control variables which consider housing characteristics of property_i such as housing type and size in transaction year_t and geographical area_i; these are the estimated coefficients: α , β ; ε_{it} is an idiosyncratic error term.

These variables are interrelated within the target area, which allows to identify the various relations based on distance. The distance is calculated by the Euclidean distance between $property_i$ and the planned redevelopment projects, using Geographic Information System (GIS) techniques. The initial target area is within a 500-meter radius to the planned redevelopment projects, while the control area is between 500 to 1,000 meters.

A set of control variables are included such as size referring to the surface area and number of rooms (Maurer et al., 2004). Furthermore, the date of transaction and location referring to the individual territories is specified (Rosen, 1974). The distinction between apartments and single-family houses is also considered (Gouriéroux & Laferrère, 2009; Bresson & Hsiao, 2011). Transactions in real estate observed at different point in time may not necessarily mean that prices shift over time, but instead observe differences in location, size or distance to planned redevelopment projects (Maurer et al., 2004).

Through the estimated equation, a comparison between the property transactions were conducted within the same territory, and transaction year. Through including the location fixed effect by a dummy, it only compares the outcome within the same region as depicted in the twelve territories. Besides the location a time fixed effect is contributed through a dummy for a comparison within the same year of sale transaction. Regarding the

planned redevelopment projects, there is no time dimension as these are future-based estimations. In addition, the transactions may compute the relation of near to, and far from, planned transformations.

4. RESULTS

4.1 Multiple linear regressions

For comprehension of the linear relationship between the transaction prices and planned redevelopment projects, three models are conducted in order to observe the variance of the dependent variable increase over the models. The dependent variable in the multilinear regression is the natural log of residential transaction prices. The model (1) serves as a reference for the other models by the hedonic baseline which excludes the control variables and only focuses on the key independent variable: planned redevelopment projects. While the other two models include more variables, for instance model (2) considers the independent variables in relation to the research questions and includes the details of the housing characteristics. To last of model (3) considers all variables in relation to location.

All models show an overall significance, the coefficient of determination (R^2) increases between the models. The R^2 is an indicator of statistical measure in a regression model that specifies the proportion of variance in the dependent variable which can be explained by the variation of the independent variables. The model (1) has a lower (R^2) in comparison to model (3) and the overall goodness of fit of the model improved to 61.74% of the variance of the dependent variable, suggesting that the perceived house transaction price is not only explained by the range to planned redevelopment projects.

T 11 F	D ·	1. 0		•	•	• •.		1 1	1	1 .	• .
Table 5	Regression	regulte of	transaction	nrices	1nr	rovimity	to 1	nlanned	redeve	lonment	nrolects
Table J.	Regression	Tesuns of	uansaction	prices	III μ	JOAIIIII	iU	pramicu	ICUCVC	iopinent	projecto
	0			1		2					1 5

	Na	tural logarithm of house	e prices
VARIABLES	(1)	(2)	(3)
Near to any planned project – within 500 m [yes = 1]	-0.16095^{***}	-0.14029^{***}	-0.02190***
Single-family house [yes = 1]	(0.00231)	-0.13772***	0.18550***
Surface area [in m ²]		0.01405***	0.01264***
Number of rooms		(0.00012)	(0.00011)
[0 = studio as reference]	1.	-0.08039*	-0.00603
2	2.	0.11322***	(0.04294) 0.27784***
	3.	(0.04323) 0.10490**	(0.04297) 0.36684***
2	4.	(0.04343) 0.01510	(0.04313) 0.31997***
	5.	(0.04381) -0.03435	(0.04344) 0.23017***
	5.	(0.04445) -0.20660***	(0.04394) 0.03371
	7	(0.04565)	(0.04493)
		(0.04922)	(0.04806)
8		-0.65165***	(0.05847)
<u>(</u>	Э.	-0.97232*** (0.08411)	-0.69990*** (0.07935)
Transaction year [2018 as reference]			
201	9	0.03543***	0.03750***

2020		(0.00331) 0.08803*** (0.00340)	(0.00261) 0.09893*** (0.00269)
2021		0.12160*** (0.00337)	0.12035*** (0.00268)
2022		0.15425*** (0.00336)	0.13170*** (0.00267)
2023		0.13205***	0.09212***
Territories [T1 Paris as reference]		(0.000,000)	
T2 Vallée Sud Grand Paris			-0.40804*** (0.00264)
T3 Grand Paris Seine Ouest			-0.18986*** (0.00345)
T4 Paris Ouest La Défense			-0.22139*** (0.00291)
T5 Boucle Nord de Seine			-0.47593*** (0.00300)
T6 Plaine Commune			-0.88160*** (0.00371)
T7 Paris Terres d'Envol			-1.06425*** (0.00347)
T8 Est Ensemble			-0.61280*** (0.00325)
T9 Grand Paris - Grand Est			-0.93591*** (0.00322)
T10 Paris-Est-Marne & Bois			-0.42373*** (0.00310)
T11 Grand Paris Sud Est Avenir			-0.83359*** (0.00363)
T12 Grand-Orly Seine Bièvre			-0.77191*** (0.00262)
Constant	12.78836*** (0.00177)	11.82614*** (0.04331)	11.99950*** (0.04302)
Observations R-squared	348,279 0.01357	348,279 0.39423	348,279 0.61740

Notes: Dependent variable is the natural log of house prices Location fixed effects are on territory level (12-levels) Robust standard errors are in parentheses ***p < 0.01; **p < 0.05; *p < 0.1

As to the regression shown in table 5, it focuses on the independent variable being a dummy variable. Where 0 refers to the planned redevelopment projects being set in the range of 500 to 1,000 meters to the transaction of *property_i*, while 1 represents the planned projects taking place within a 500-meter radius to the transaction property. Therefore, there is a negative association of 2.17% on the transaction price when the planned redevelopment project is in proximity of 500-meters.

If the housing type of the transaction is a single-family house, then it is associated with a $(e^{0.1855} - 1) \ge 100$ (= 20.38%) percentage increase in the transaction price. This value might be distorted due to the large quantity of transaction prices considering apartments instead of single-family houses. Common advantages reflecting a house includes more space, possibly a garden and further independence. The previous mentioned parameters are all significant at the 1%-level.

The coefficients for the variable number of rooms are positive, until there are seven rooms within the properties of transaction in reference to a studio. The different number of rooms are significant at the 1%-level except for one-room and six-room housing. This means, as the number of rooms increase, so does the house price until the three-room housing as the coefficients from there onwards are in a descending order. When the number of rooms increases past a three-room housing, then the house transaction price declines, therefore, the marginal benefit would descend.

Location fixed effects are on a territory level based on the twelve territories consisting in the study area. The house transaction prices tend to be lower in all the territories besides the reference variable as of T1 Paris. The lowest transaction prices are expected within the neighbourhoods of the territories T6 Plaine Commune, T7 Paris Terres d'Envol and T9 Grand Paris - Grand Est, with a 59% to 66% lower price indication in comparison to the reference category. Therefore, it can be drawn to conclusion that T1 Paris is the most preferred location to live at in Paris.

 Table 6. Regression results of transaction prices in proximity to distinct transformation types of planned

 redevelopment projects

	Natu	ral logarithm of house p	orices
VARIABLES	(1)	(2)	(3)
Near to planned project – within 500 m [Near to rehabilitation as reference]			
Near to demolition-and-development	-0.25273***	-0.18371***	-0.04788***
	(0.02020)	(0.01619)	(0.01349)
Near to both transformations	-0.38035***	-0.31311***	-0.21678***
	(0.02256)	(0.01879)	(0.01536)
Single-family house [yes = 1]		-0.10885***	0.24402***
		(0.01818)	(0.01676)
Surface area [in m ²]		0.01486***	0.01197***
		(0.00054)	(0.00048)
Number of rooms [0 = studio as reference]			
1.		-0.38961***	-0.30388**
		(0.14637)	(0.15176)
2.		-0.19222	-0.01948
		(0.14681)	(0.15206)
3.		-0.20677	0.07828
		(0.14843)	(0.15324)
4.		-0.32319**	0.05336
		(0.15116)	(0.15527)
5.		-0.38728**	-0.02043
		(0.15516)	(0.15809)
6.		-0.72059***	-0.32310*
		(0.16600)	(0.16649)
7.		-0.97987***	-0.55062***
		(0.18631)	(0.18360)
8.		-1.46823***	-0.96121***
		(0.26509)	(0.25239)
9.		-2.07906***	-1.43796***
		(0.49836)	(0.44237)
Transaction year			
[2018 as reference]			
2019		0.03469**	0.04550***
		(0.01520)	(0.01214)

	2020		0.08914***	0.10328***
	2021		(0.01559)	(0.01241) 0.001/11***
	2021		(0.01587)	(0.01273)
	2022		0.15191***	0.11168***
			(0.01540)	(0.01223)
	2023		0.13579***	0.09350***
			(0.01884)	(0.01490)
[T1 Paris as reference]				
	T2 Vallée Sud Grand Paris			-0.43737*** (0.01135)
	T3 Grand Paris Seine Ouest			-0.16352*** (0.01305)
	T4 Paris Ouest La Défense			-0.23013***
	T5 Boucle Nord de Seine			-0.62949***
	T6 Plaine Commune			(0.01750) -
	T7 Paris Terres d'Envol			-0.98856*** (0.01273)
	T8 Est Ensemble			-0.58268***
	T9 Grand Paris – Grand Est			-1.01485***
	T10 Paris-Est-Marne & Bois			-0.36405***
	T11 Grand Paris Sud Est Avenir			-0.94460***
	T12 Grand-Orly Seine Bièvre			-0.88858*** (0.01074)
Constant		13.05507*** (0.01933)	12.27055*** (0.14757)	12.42806*** (0.15249)
Observations R-squared		20,462 0.01765	20,462 0.41410	20,462 0.62710

Notes: Dependent variable is the natural log of house prices Location fixed effects are on territory level (12-levels) Robust standard errors are in parentheses ***p < 0.01; **p < 0.05; *p < 0.1

Regarding the interpretation of table 6, the regressions were solely run on planned redevelopment projects in proximity to transactions of *property_i*. Any observation with planned transformations within the target area of 500 to 1,000-meters was secluded from the regressions, therefore, a composition of 327,817 observations were excluded from this subset. All remaining observations within table 6 have at least one planned redevelopment project near a 500-meter transaction. This table also distinguishes between the types of planned redevelopment projects. For instance, properties near projects of both planned transformations negatively associate a 19.49% with residential prices while planned demolition-and-development projects only have a 4.68% negative association to house prices in relation to the reference of planned rehabilitation projects. Both values have a significance level of 1%.

Table 7. Regression results of transaction prices in distance to specific transformation types referred to planned redevelopment projects

		N	atural logarithr	n of house price	es	
VARIABLES	(1)	(2)	(3)	(4)	(5)	(6)
Near to planned project – within 500 m [no transformation as reference]						
Near to rehabilitation	0.06343***	0.05988^{***}	0.03647***	0.05063***	0.04262***	0.03624^{***}
Near to demolition-and-development	-0.12200***	-0.10616***	-0.00488***	-0.11765***	-0.09929***	-0.00126
Near to both transformations	-0.30896***	-0.27263***	-0.09005***	-0.25921***	-0.24252***	-0.07939***
Far from planned project – 500 - 1,000 m	(0.00327)	(0.00269)	(0.00224)	(0.00343)	(0.00282)	(0.00230)
[no transformation as reference] Far from rehabilitation				0.08291***	0.12605***	0.06718***
Far from demolition-and-development				(0.00767) -0.13158***	(0.00605) -0.10004***	(0.00505) -0.01853***
Far from both transformations				(0.00556) -0.23554***	(0.00428) -0.15406***	(0.00347) -0.05483***
				(0.00557)	(0.00435)	(0.00354)
Single-family house [yes = 1]		-0.13663*** (0.00338)	0.18260*** (0.00304)		-0.12271*** (0.00338)	0.18435*** (0.00304)
Surface area [in m ²]		0.01382***	0.01258***		0.01347***	0.01245***
Number of rooms [0 = studio as reference]		(0.00012)	(0.00011)		(0.00012)	(0.00011)
1.		-0.07759* (0.04269)	-0.00622 (0.04267)		-0.06107 (0.04205)	-0.00061 (0.04246)
2.		0.12351***	0.27919***		0.15016***	0.28785***
3.		0.12078***	0.36956***		0.15617***	0.38058***
4.		(0.04293) 0.03633	(0.04286) 0.32481***		(0.04228) 0.07602*	(0.04265) 0.33721***
5.		(0.04330) -0.01146	(0.04317) 0.23626***		(0.04266) 0.02899	(0.04295) 0.24965^{***}
6		(0.04394)	(0.04366)		(0.04328)	(0.04345) 0.05616
0.		(0.04514)	(0.04466)		(0.04450)	(0.04445)
7.		-0.39487*** (0.04872)	-0.18224*** (0.04779)		-0.34271*** (0.04811)	-0.16424*** (0.04759)
8.		-0.61890***	-0.40195***		-0.55590***	-0.37966***
9.		-0.93850***	-0.69014***		-0.86835***	-0.66557***
Transaction year		(0.08389)	(0.07933)		(0.08328)	(0.07912)
[2018 as reference] 2019		0 03472***	0 03728***		0 03374***	0 03694***
2010		(0.00328)	(0.00260)		(0.00324)	(0.00260)
2020		(0.00337)	(0.09893^{+++})		$(0.08/3)^{++++}$ (0.00334)	$(0.098/8^{+++})$
2021		0.12195*** (0.00334)	0.12060*** (0.00267)		0.12160*** (0.00331)	0.12062*** (0.00266)
2022		0.15283*** (0.00333)	0.13144***		0.15141***	0.13130***
2023		0.12960***	0.09183***		0.12757***	0.09167***
Territories		(0.00-13)	(0.00333)		(0.00+00)	(0.00332)
[11 Paris as reference] T2 Vallée Sud Grand Paris			-0.41410***			-0.41425***
T3 Grand Paris Seine Ouest			(0.00265) -0.19026*** (0.00345)			(0.00269) -0.20306*** (0.00346)

		-0.21917^{***}			-0.21464***
		-0.46529***			-0.45224***
		-0.84617***			-0.82201***
		(0.00379) -1.05724***			(0.00387) -1.04895***
		(0.00344) -0.58771***			(0.00344) -0.56487***
		(0.00329) -0.93145***			(0.00333) -0.92355***
		(0.00320) -0.42790***			(0.00318) -0.42866***
		(0.00310) -0.83265***			(0.00313) -0.83277***
		(0.00359) -0.77262***			(0.00357) -0.76912***
		(0.00261)			(0.00261)
12.78836*** (0.00177)	11.82675*** (0.04281)	11.99962*** (0.04275)	12.93218*** (0.00571)	11.91088*** (0.04239)	12.01642*** (0.04269)
348,279 0.02747	348,279 0.40525	348,279 0.61934	348,279 0.04374	348,279 0.41565	348,279 0.62114
	12.78836*** (0.00177) 348,279 0.02747	12.78836*** 11.82675*** (0.00177) (0.04281) 348,279 348,279 0.02747 0.40525	$\begin{array}{c} -0.21917^{***}\\ (0.00289)\\ -0.46529^{***}\\ (0.00303)\\ -0.84617^{***}\\ (0.00379)\\ -1.05724^{***}\\ (0.00379)\\ -1.05724^{***}\\ (0.00329)\\ -0.93145^{***}\\ (0.00320)\\ -0.42790^{***}\\ (0.00320)\\ -0.42790^{***}\\ (0.00310)\\ -0.83265^{***}\\ (0.00359)\\ -0.77262^{***}\\ (0.00261)\end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Notes: Dependent variable is the natural log of house prices Location fixed effects are on territory level (12-levels) Robust standard errors are in parentheses ***p < 0.01; **p < 0.05; *p < 0.1

Regarding table 7, there is a distinction of transformations in proximity to *property*_i. The transformations of planned redevelopment projects distinguish between no planned transformation, planned rehabilitation, planned demolition-and-development and the planned combination of both transformations. For instance, models 1, 2, and 3 focus on the transformations occurring near to *property*_i within a 500-meter radius. One unexpected finding was the extent to which the coefficients changed the sign and value based on the distinction between transformations. Nevertheless, the coefficients tend to resonate in size as more control variables are added to the individual models. The transactions in proximity to planned rehabilitation have led to positive significant coefficients. The residential transactions located near planned rehabilitation associate a 3.69% higher house price, while properties near planned demolition-and-development are not significant as compared to the reference category of no near planned transformations. The association of transaction prices are largest when both transformations infiltrate within a 500-meter radius on the transaction. Both planned transformations correlate to a significant 7.63% lower transaction price as opposed to the reference class.

The outcomes for the variables far from planned projects in relative distance to transactions are significant. The models 4, 5, 6 resemble the continuity of planned rehabilitation having a positive association on house prices while both planned transformations have a negative relation to house prices. Planned rehabilitation projects, within the 500 to 1,000-meter range, explore a 6.95% higher house price, as to the reference variable. This is a higher percentage than the value of rehabilitation projects in proximity to transactions.

The residential transaction prices far from planned demolition-and-development projects associate a price drop of 1.84%, while far from both planned transformations relate a 5.34% decline in house prices in comparison to

the reference icon. No planned transformation is used as the reference category. The coefficients of no planned projects in relation to house prices are expected to remain constant, therefore, the outcomes can rely on the reference category of no transformation. In addition, the outcomes of the control variables tend to align with the regressions as shown in table 5.

In contribution of the results, a regression was run as shown in Appendix E, where the observations were mutually exclusive, the observations were either set within a 500-meter radius or in the range of 500 to 1,000-meters. The distinction between the types of planned redevelopment projects located in the control or target area has strengthened the results of table 7. The association between the variables increased while the tendency remains the same, with the exception of the planned demolition-and-development projects, which positively associates with house prices.

4.2 Robustness and heterogeneity

For the robustness test, the regressions are surpassing robust standard of errors. Furthermore, Chow tests are implied to assess the stability of coefficients in multiple linear regression models (Chow, 1960). In addition to evaluating whether there is a significant difference among the coefficients in the regression model between different subgroups, providing insights to determine structural change between the variable in the data.

$$Chow F = \frac{RSS_p - (RSS_1 + RSS_2)}{k} / \frac{RSS_1 + RSS_2}{T - 2k}$$

Where, the Chow F test follows a k-distribution, last factor of the denominator (T - 2k) is the degree of freedom, k is the number of parameters, RSS_p is the sum of the squared residuals from the dataset, RSS_1 and RSS_2 are the sum of residuals from the individual regression subgroup, and T is the total number of observations in the data.

		Natural logarithm of house prices							
VARIABLES		Residual Sum Squares	Number of observations	Regressors					
Housing type									
Pooled		63734.0113	348,279	28					
	Single-family house	7750.45027	43,268						
	Apartments	52587.3247	305,011						
Territories									
Pooled		99410.7762	348,279	18					
	T1 Paris	23479.6353	110,104						
	T2 Vallée Sud Grand Paris	2860.14881	25,284						
	T3 Grand Paris Seine Ouest	2930.72019	17,564						
	T4 Paris Ouest La Défense	4580.83827	27,821						
	T5 Boucle Nord de Seine	3708.88025	23,341						
	T6 Plaine Commune	3594.83632	18,167						
	T7 Paris Terres d'Envol	1565.27464	14,701						
	T8 Est Ensemble	4143.77781	22,524						
	T9 Grand Paris - Grand Est	2709.79368	19,644						
	T10 Paris-Est-Marne & Bois	5109.38468	26,613						
Т	11 Grand Paris Sud Est Avenir	1295.73509	11,857						
	T12 Grand-Orly Seine Bièvre	4084.60819	30,659						

Table 8. Regression results of the Chow tests

Notes: Dependent variable is the natural logarithm of house prices.

The units for the Chow tests are portrayed in table 8. Two heterogeneity tests are being run, one based on the housing type and the other one shows the geographical diversity of Parisian territories. The individual regression for each subgroup is indicated in Appendix G.

In the regressions for single-family houses and apartments, the variables have a significant and positive coefficient in both estimations. To test whether the coefficients are significantly different between the distinction of housing types, a Chow test is performed as shown below:

$$Chow F = \frac{63734.01 - (7750.45 + 52587.32)}{28} / \frac{7750.45 + 52587.32}{348,279 - 2(28)} = 700.02$$

The Chow test indicates an F-score of 700.02 which is higher than the critical value of 1.48 at a significance of 0.05 (f [28, ∞] = 1.48). The critical value is found in the F-distribution table (refer to Appendix F). Based on these results, the correlation between transaction prices state significantly different outcomes for single-family houses and apartments.

Furthermore, concerns may arise when assessing the results especially by taking into the account spatial and societal differences across the twelve territories. Therefore, heterogeneity is tested across the twelve geographical territories with the Chow test.

С	how F
	99410.78 - (23479.64 + 2860.15 + 2930.72 + 4580.84 + 3708.88 + 3594.84 + 1565.27 + 4143.78 + 2709.79 + 5109.38 + 1295.74 + 4084.61)
=	18
,	523479.64 + 2860.15 + 2930.72 + 4580.84 + 3708.88 + 3594.84 + 1565.27 + 4143.78 + 2709.79 + 5109.38 + 1295.74 + 4084.61
/	348,279 – 12(18)
_	12667 38

The results of the regressions for each of the twelve territories show the Chow test state the F-score of 12667.38 which is greater than the critical value of 1.61 at a 0.05 significance (f [18, ∞] = 1.61). These results show diverse correlations between the territories meaning transaction prices are significantly different for each territory.

5. DISCUSSION

The research explores the relationship between planned redevelopment projects and house transaction prices. To assess the house prices in proximity of a 500-meter radius to planned redevelopment projects and whether there is a distinction between the types of transformation: planned demolition-and-development and planned rehabilitation. The research also aims to identify whether planned projects are targeted to be implemented in specific neighbourhoods and if the findings were generalisable in the territories of the Greater Metropolitan Region of Paris.

The findings suggest that there is a negative association of planned redevelopment projects in proximity to house prices in the transaction years of 2018 to 2023. The significant coefficient exemplifies a negative 2.17% association to house prices. The house prices tend to shift to lower prices, when there are planned redevelopment projects within a radius of 500-meters, as seen in the theoretical framework and investigated with a hedonic regression model. In support of the findings, the house prices may have a negative association with planned redevelopment projects as these are ultimately not constructed yet and therefore, the house prices may have more of an association to neighbourhood characteristics. The findings associate planned redevelopment projects with being lucrative in neighbourhoods of poor perceived qualities. Most projects are planned in neighbourhoods with a lower range of income, consistent with the literature of Weber et al. (2006) who confirms for redevelopment projects to occur in neighbourhoods with declining/stagnant income or property prices. Neighbourhoods in territories T6 Plaine Commune, T7 Paris Terres d'Envol and T12 Grand-Orly Val-de-Bievre Seine-Amont have the highest number of planned redevelopment projects, as well as households with the lowest income while the regressions record the lowest house prices in the territories T6 Plaine Commune, T7 Paris Terres d'Envol, and T9 Grand Paris Grand Est. Furthermore, lower transaction prices are accumulating from existing housing in neighbourhoods of poor quality or in competition to properties undertaken improvements such as rehabilitation or new contributions through demolition-and-development. The results indicate an assumption where transaction prices associate more with neighbourhood qualities than the planned redevelopment projects. Nonetheless, a variability across the twelve territories of the Greater Metropolitan Region of Paris is taken on record based on the heterogeneity test.

Despite the neighbourhood qualities, house prices increased over the previous years in Paris, as the city struggles with spatial scarcity for housing. The potential net additions to the housing stock by planned redevelopment projects may reduce the housing scarcity and may release the pressure on housing demand. On the contrary, house prices may decline, due to the expected disturbances during the construction phase which may distort the willingness to pay for housing near planned redevelopment projects (Ng, 2000; Turf Factory Direct, 2021; Kuiper, 2023). Regarding Whitehead et al. (2015), nearby house prices decline throughout the construction phase of redevelopment projects, but the prices rise after completion, which is falling in line with the study of Kurvinen and Vihola (2016). Based on these studies, it is expected to for the planned redevelopment projects to influence the statistical analysis post construction.

Master thesis

2023/2024

The distinction of transformation types: no transformation, planned rehabilitation, planned demolition-anddevelopment and transformation of both features led to significant coefficients. Lower coefficients are present between house prices in distance to the individual planned redevelopment project in comparison to the joint impact of both planned redevelopment projects. This means that the individual planned transformations of rehabilitation and demolition-and-development have a lower relation to house prices while the unity of both transformations have a stronger association to prices. The coefficients showed a significant positive relation of planned rehabilitation despite the radius change. For instance, properties in proximity to planned rehabilitation are associated with a 3.69% higher house price, while properties near both planned transformations have transaction prices lower by 7.63% as compared to the reference category of no transformations in 500-meter radius. The association of transaction prices is largest when both transformations infiltrate near the transaction. On the other hand, the house prices far from planned rehabilitation are associated with higher positive values as opposed to the house prices declining far from planned demolition-and-development projects. The observed increase in house prices by planned rehabilitation could be attributed to the upcoming physical improvements of the property plus neighbouring qualities. These findings support the results of Smith and Hevener (2011), where rehabilitation raised the median sales price in the target region, in particular distressed properties which executed rehabilitation led beneficial spillovers to raise neighbouring transaction prices (Ganduri & Maturana, 2022). Unfortunately, the findings of planned demolition-and-development on house price are rather difficult to interpret because of the combination of two concepts. For instance, through the destruction of properties tends to resonate a negative association with house prices in sequence of the study from Bramley et al. (2007). While Yin and Silverman (2015), acknowledged demolished properties to have no significant impact on house prices for the years before or after massive demolition effort, which could relate to the lower association within the findings. Overall, the results have similarities with the research of Brunes et al. (2020), who discovered positive house prices in proximity to developments. The combination of demolition, which tends to have a negative relation to house prices and development, which contributes with positive outcomes can compensate for the small percentage associating to house prices. However, the literature of Kurvinen and Vihola (2016) demonstrated an immediate positive 2.6% relation on house values within one year after the development is completed, cementing the theoretical belief that rehabilitation and demolition-and-development do indeed raise house prices following a certain period of time.

This study focuses on future-oriented planned redevelopment projects in proximity to the residential transactions and identifies a reaction of house prices prior to the completion as the expectation of future benefits leads to an increase in prices (Liang et al., 2019). Planned projects will eventually induce urban change, enhance living quality, and improve the city's appearance leading to an ultimate increase of house prices (Kuiper, 2023; Liang et al., 2019). However, the negative outcomes of planned projects relate to a rise in house prices resulting in gentrification and displacement of vulnerable groups (Wilhelmsson et al., 2021).

The data lacks to certify hypothesis 1, instead of a higher relation, there is a lower negative percentage association to transaction prices within a 500-meter radius in comparison to the 500 to 1,000-meters range from

2023/2024

planned redevelopment projects. Several components could explain this observation. For instance, it might be explanatory due to the frequency, which is at large in the buffer of 500 to 1,000 meters. Nevertheless, this study struggles to demonstrate the association of planned redevelopment projects to fade with distance to the transaction. Therefore, an alternative explanation for this result is based on transactions distanced far from projects are less associated to redevelopment projects, but instead, these relate to externalities caused by neighbourhood qualities. As previously discovered more redevelopment projects are planned in poor perceived neighbourhoods, which supports the lower transaction prices in these neighbourhoods. It is possible that the results have been confounded by the external factors to reassure hypothesis 1, as house prices may not only stand in association to redevelopment projects depending on the distance. Positive and negative externalities are therefore judged on the perceived neighbourhood qualities rather than those interpreted from planned redevelopment projects. Nevertheless, the idea implication of planned redevelopment may increase the neighbourhood quality because of socio-economic and environmental changes. This modifies poorly perceived qualities to highly perceived neighbourhood qualities which supports the expectation of house prices to rise.

Nevertheless, there are limitations to this research. This study focuses on future-oriented planned redevelopment projects in proximity to the residential transactions, the results are explorative, so predictions remain and are used for interpretations. There remains a likelihood for planned projects to be withdrawn before construction, this may happen and should be considered in the outcomes. There is an absence of investigations involving planned redevelopment projects, which struggles to support the results in comparison to completed redevelopment projects. Regarding the data, multiple observations had to be eliminated due to missing values and transaction prices which exemplified buildings instead of specifying the price per apartment. Furthermore, the DVF dataset did not provide the construction years of the properties, which may have been useful for determining the deterioration of the properties and to build a relation with foreseen rehabilitation. The new use type of reconstruction was also not specified within the data, which may have alternated the residential transaction prices as well. Another limitation was the lack of neighbourhood characteristics which contributed to the empirical analysis; therefore, the results might have been affected by alternative reasons instead of the planned redevelopment projects. Although there are these limitations, it remains a relevant study as it establishes the association of house prices with different types of transformations of future-oriented redevelopment projects and creates a potential foundation for a causal effect of redevelopment projects influencing house prices.

6. CONCLUSION AND REFLECTION

This study aims to analyse the association of planned redevelopment projects in the proximity of house transaction prices in the Greater Metropolitan Region of Paris, France. The research examines house prices using a hedonic model and the use of ordinary least-square regressions. The investigation reflects a significant association of 2.17% lower residential transaction prices, when planned redevelopment projects are within a 500-meter radius. Furthermore, significant differences in residential transaction prices are observed between the distinct types of transformations. Planned rehabilitation projects associate positively with prices while neighbourhoods including planned demolition-and-development projects or both transformations describe a negative relation to transaction prices. Nonetheless, the combination of both transformations indicates a higher association with house prices when in proximity to transactions. The distinction between far and near may be explained by the concentration of where the redevelopment projects are planned, as there is a higher tendency for transformations to take place in poorer neighbourhoods and therefore, reflect a lower transaction price. The investigation explored heterogenous outcomes between the two categories of housing type and the twelve territories of the Greater Metropolitan Region in Paris, France. Based on these findings/research, it appears that planned redevelopment projects tend to be associated with residential transaction prices.

The central research question was comprehensively investigated through concepts found in redevelopment literature and quantitative record presenting transactional data in Paris. This analysis contributes to further discussions of policies to support future planned transformations while considering the local housing market. Due to geographical and environmental constraints, local policymakers should acknowledge and promote policies to support rehabilitation of existing properties further instead of focusing on demolition-anddevelopment projects. Results indicate spatial differences among house prices in range of planned redevelopment projects. Neighbourhoods of poorly perceived quality should be considered by urban policymakers as housing prices can be associated with neighbourhood quality. Housing policies have the potential to offer assistance for vulnerable residents, prevent displacement, and provide affordable housing as recommendations for achieving more equitable housing. The redevelopment projects are in the planning phase; therefore, the policymakers have enough time to establish regulations to condemn the potential causal effect of new redevelopment projects on house prices. In addition, environmental contributions such as green spaces have an impact on stability and safety, as well as subjective welfare benefits. For instance, the inhabitants of poorquality neighbourhoods should be provided with assistance to enhance their wellbeing through health and life satisfaction. These changes can impact the perception of neighbourhoods, therefore increasing neighbourhood quality, and changing the association to house prices. The findings raise awareness for homebuyers and potential property buyers and sellers as house prices can be associated with upcoming redevelopment projects, taking into account both the project being conducted as well as the positive and negative externalities that come from it.

2023/2024

Future investigations may elaborate on what neighbourhoods' developments take place while considering further external neighbourhood characteristics such as safety measures, or access/distance to facilities, which may be associated with house transaction prices. To develop deeper understanding of the association, additional studies will be needed that distinguish between the different causes. This study suggests that in proximity to anticipated improvements it will incentivize future benefits as well as create disturbances influencing house prices. To validate the causes, anticipation effects are relevant to consider for evaluating planned redevelopment projects. Furthermore, after the planned redevelopment projects are constructed, research can be applied to other study areas to gain deeper understanding of the potential redevelopment projects and their association between transactional prices and redevelopment projects.

REFERENCES

- Alba-Rodríguez, M. D., Martínez-Rocamora, A., González-Vallejo, P., Ferreira-Sánchez, A., & Marrero, M. (2017). Building rehabilitation versus demolition and New Construction: Economic and Environmental Assessment. *Environmental Impact Assessment Review*, 66, pp. 115–126. https://doi.org/10.1016/j.eiar.2017.06.002.
- APUR (2023). *Bati Demolition*. Retrieved on October 2nd, 2023 from https://geocatalogue.apur.org/catalogue/srv/fre/catalog.search#/metadata/c04b959d-7a68-43e5-ac4f-cff67f03b857.
- APUR (2018). Établissements publics territoriaux de la Métropole du Grand Paris au 1er janvier 2016. Retrieved on October 10th, 2023 from https://www.apur.org/sites/default/files/documents/page-debase/fichiers-attaches/ept_carte12t_chiffres_cles_2018.pdf?token=Hg8HWVZu
- Balchin, P.N. (2004). Housing policy in Europe. London: Routledge.
- Barreca, A., Curto, R. & Rolando, D. (2020). Urban vibrancy: An emerging factor that spatially influences the real estate market. *Sustainability*, 12(1), p. 346. doi:10.3390/su12010346.
- Beimer, W. & Maennig, W. (2020). On the price gap between single family houses and apartments. *Journal of Housing Economics*, 49, p. 101686. doi:10.1016/j.jhe.2020.101686.
- Blanco, H. (2023). Pecuniary Effects of Public Housing Demolitions: Evidence from Chicago. *Regional Science and Urban Economics*, 98.
- Bogin, A.N. & Doerner, W.M. (2019). Property renovations and their impact on House price index construction. *Journal of Real Estate Research*, 41(2), pp. 249–284. doi:10.1080/10835547.2019.12091526.
- Bokhari, S. & Geltner, D. (2016). Characteristics of depreciation in commercial and multifamily property: An investment perspective. *Real Estate Economics*, 46(4), pp. 745–782. doi:10.1111/1540-6229.12156.
- Bramley, G., Leishman, C., Karley, N.K., Morgan, J. & Watkins, D. (2007). Transforming places: Housing investment and neighbourhood market change. York: Joseph Rowntree Foundation.
- Bresson, G. & Hsiao, C. (2011). A functional connectivity approach for modelling cross-sectional dependence with an application to the estimation of hedonic housing prices in Paris. *Advances in Statistical Analysis*, 95(4), pp. 501-529.
- Brooks, C. & Tsolacos, S. (2010). Real estate modelling and forecasting. Cambridge University Press.
- Brunes, F., Hermansson, C., Song, H.S. & Wilhelmsson, M. (2020). Nimbys for the rich and Yimbys for the poor: Analyzing the property price effects of infill development. *Journal of European Real Estate Research*, 13(1), pp. 55–81. https://doi.org/10.1108/jerer-11-2019-0042
- Buckley, C. (2012). Never Demolish: Bois-le-Prêtre Regrows in Paris. Anyone Corporation, 24, pp. 43-50.
- Cardoso, R. (2022). Haussmannian building repair, rehabilitation and strengthening: Case study from France. *Proceedings of the Institution of Civil Engineers - Engineering History and Heritage*, 175(1), pp. 7–20. https://doi.org/10.1680/jenhh.20.00006.

- Cazi, E. (2023). *Paris is transforming rather than demolishing its buildings*. Le Monde. Retrieved on October 4th, 2023 from https://www.lemonde.fr/en/economy/article/2023/03/01/in-paris-a-movement-for-transforming-buildings-rather-than-demolishing-them_6017730_19.html.
- Chow, G.C. (1960). Tests of Equality between Sets of Coefficients in Two Linear Regressions. *Econometrica*, 28(3), pp. 591-605, https://doi.org/10.2307/1910133.
- Daams, M.N., Sijtsma, F.J. & Vlist, A.J. van der (2016). The effect of natural space on nearby property prices: accounting for perceived attractiveness. *Land Economics*, 92(3), pp. 389-410.
- Demandes de Valeurs Foncières (DVF) (2023). *data.gouv.fr*. Retrieved on October 2nd, 2023 from https://www.data.gouv.fr/fr/datasets/demandes-de-valeurs-foncieres/ AND https://www.data.gouv.fr/fr/datasets/demandes-de-valeurs-foncieres-geolocalisees/#/resources
- Evans, A.W. (2004). Economics, real estate, and the supply of land. Oxford, UK: Blackwell.
- Fingleton, B. (2008). Housing Supply, housing demand, and affordability. *Urban Studies*, 45(8), pp. 1545–1563. doi:10.1177/0042098008091490.
- Ganduri, R. & Maturana, G. (2022). Do property rehabs affect neighboring property prices? *SSRN Electronic Journal*. doi:10.2139/ssrn.3794796.
- Global Property Guide (2023). *France residential real estate market analysis 2023*. Retrieved on November 11th from https://www.globalpropertyguide.com/europe/france/price-history.
- Glaeser, E. & Gyourko, J. (2018). The economic implications of Housing Supply. *Journal of Economic Perspectives*, 32(1), pp. 3–30. doi:10.1257/jep.32.1.3.
- Goix, R.L. & Ysebaert, R. (2022). Housing, Price, (un)Affordability. Using Transactions Data to Analyze Neighborhood-based Dynamics of Affordability (Paris, Lyon, Avignon, France). Urban Affairs Association. HAL.
- Gouriéroux, C. & Laferrère, A. (2009). Managing hedonic housing price indexes: The French experience. Journal of Housing Economics, 18(3), pp. 206-213.
- Hauge, Å.L., Magnus, E., Denizou, K. & Øyen, C.F. (2012). The meaning of rehabilitation of multi-storey housing for the residents. *Housing, Theory and Society*, 29(4), pp. 358–381. doi:10.1080/14036096.2012.655380.
- Hilber, C.A. (2017). The economic implications of house price capitalization: A synthesis. *Real Estate Economics*, 45(2), pp. 301–339. doi:10.1111/1540-6229.12129.
- Insee (2023). *Revenus, pauvreté et niveau de vie en 2020 (Iris). Insee*. Retrieved on November 20th, 2023 from https://www.insee.fr/fr/statistiques/7233950#consulter
- Jabot, D. (2023). *Bilan démographique 2022 de l'Île-de-France : deux naissances pour un décès*. Institut national de la statistique et des études économiques (INSEE). Retrieved on October 15th, 2023 from https://www.insee.fr/fr/statistiques/6968304.
- Kurvinen, A.T. & Vihola, J. (2016). The impact of residential development on nearby housing prices. *International Journal of Housing Markets and Analysis*, 9(4), pp. 671–690. doi:10.1108/ijhma-10-2015-0069.

- Kuiper, N. M. (2023). Externalities, Place-Based Policies and Urban Regeneration. [Thesis fully internal (DIV), University of Groningen]. *University of Groningen*. https://doi.org/10.33612/diss.697845945
- Lefebvre, I. (2021). Understanding French housing policy (and its challenges), Institut Montaigne. Retrieved on January 8th, 2024 from https://www.institutmontaigne.org/en/expressions/understanding-french-housing-policy-and-its-challenges.
- Leonard, T., Powell-Wiley, T.M., Ayers, C., Murdoch, J.C., Yin, W. & Pruitt, S.L. (2016). Property Values as a Measure of Neighborhoods. *Epidemiology*, 27(4), pp.518–524. doi:https://doi.org/10.1097/ede.00000000000470.
- Li, L.H., Cheung, D. & Sun, H. (2014). Does size matter? the dynamics of housing sizes and prices in Hong Kong. *Journal of Housing and the Built Environment*, 30(1), pp. 109–124. doi:10.1007/s10901-014-9398-1.
- Liang, C.M., Lee, C.C. & Yong, L.R. (2019). Impacts of urban renewal on neighborhood housing prices: Predicting response to psychological effects. *Journal of Housing and the Built Environment*, 35(1), pp. 191–213. doi:10.1007/s10901-019-09673-z.
- Liu, X. & Wang, L. (2014). Spatial analysis on future housing markets: Economic Development and Housing Implications. *The Scientific World Journal*, 2014, pp. 1–8. doi:10.1155/2014/838021.
- Maduta, C., Melica, G., D'Agostino, D. & Bertoldi, P. (2022). Towards a decarbonised building stock by 2050: The meaning and the role of zero emission buildings (ZEBs) in Europe. *Energy Strategy Reviews*, 44, 101009. https://doi.org/10.1016/j.esr.2022.101009
- Maurer, R., Pitzer, M. & Sebastian, S. (2004). Hedonic price indices for the Paris housing market. *Allgemeines Statistisches Archiv*, 88(3), pp. 303-326.
- Mayer, N. S. (1981). Rehabilitation decisions in rental housing: An empirical analysis. *Journal of Urban Economics*, 10(1), pp. 76–94. https://doi.org/10.1016/0094-1190(81)90024-3.
- McMillen, D.P. (2008). Changes in the distribution of house prices over time: Structural characteristics, neighborhood, or coefficients? *Journal of Urban Economics*, 64(3), pp. 573–589. doi:10.1016/j.jue.2008.06.002.
- Milovanović, A., Dragutinovic, A., Nikezić, A., Pottgiesser, U., Stojanovski, M., Ivanovska Deskova, A., Ivanovski, J. & Damjanovska, T. (2022). Rehabilitation of mass housing as a contribution to social equality: Insights from the east-west european academic dialogue. *Sustainability*, 14(13), pp. 8106. https://doi.org/10.3390/su14138106
- Mouratidis, K. (2020). Neighborhood characteristics, neighborhood satisfaction, and well-being: The links with neighborhood deprivation. *Land Use Policy*, 99. doi:10.1016/j.landusepol.2020.104886.
- Mulder, C.H. (2006). Population and housing: A two-sided relationship. *Demographic Research*, 15, pp. 401–412. doi:10.4054/demres.2006.15.13.
- Nappi-Choulet, I. & Maury, T.-P. (2011). A spatial and temporal autoregressive local estimation for the Paris Housing Market. *Journal of Regional Science*, 51(4), pp. 732–750. doi:10.1111/j.1467-9787.2011.00713.x.
- Ng, C.F. (2000). Effects of building construction noise on residents: A quasi-experiment. *Journal of Environmental Psychology*, 20(4), pp. 375–385. doi:10.1006/jevp.2000.0177.

- Oueslati, W., Alvanides, S. & Garrod, G. (2015). Determinants of urban sprawl in European cities. *Urban Studies*, 52(9), pp. 1594–1614. doi:10.1177/0042098015577773.
- Paredes, D. & Skidmore, M. (2017). The net benefit of demolishing dilapidated housing: The case of Detroit. *Regional Science and Urban Economics*, 66, pp. 16–27. doi:10.1016/j.regsciurbeco.2017.05.009.
- Pipa, H., Brito, J. de & Cruz, C.O. (2017). Sustainable rehabilitation of historical urban areas: Portuguese case of the Urban Rehabilitation Societies. *Journal of Urban Planning and Development*, 143(1). https://doi.org/10.1061/(asce)up.1943-5444.0000348
- Rosen, S. (1974). Hedonic prices and implicit markets: Product differentiation in pure competition. *Journal of Political Economy*, 82(1), pp. 35-55.
- Rosenthal, S.S. (2008). Old homes, externalities, and poor neighborhoods. A model of urban decline and renewal. *Journal of Urban Economics*, 63(3), pp.816–840. doi:https://doi.org/10.1016/j.jue.2007.06.003.
- Smith, M.M. & Hevener, C.C. (2011). The impact of housing rehabilitation on local neighborhoods: The case of small community development organizations. *American Journal of Economics and Sociology*, 70(1), pp. 50–85. doi:10.1111/j.1536-7150.2010.00763.x.
- Tardiveau, T. (2020). *Private housing construction and renovation in France*. Ministère de l'Économie et des Finances, No.261. Retrieved on January 9th, 2024 from https://www.tresor.economie.gouv.fr/Articles /2020/06/30/private-housing-construction-and-renovation-in-france
- Teng, H.J., Chang, C.O. & Chen, M.C. (2016). Housing bubble contagion from city centre to suburbs. *Urban Studies*, 54(6), pp. 1463–1481. doi:10.1177/0042098016631297.
- Turf Factory Direct (2021). *How new development affects home value*. Retrieved on October 20th, 2023 from: https://turffactorydirect.com/2020/10/02/how-new-development-affects-home-value/.
- Turnbull, G.K. & Vlist, A.J. van der (2023). Foreclosures and housing prices: Does neighborhood configuration matter?, *The Annals of Regional Science*, 72(2), pp. 407–433. doi:10.1007/s00168-023-01206-5.
- Weber, R., Doussard, M., Bhatta, S.D. & Mcgrath, D. (2006). Tearing the City Down: Understanding Demolition Activity in Gentrifying Neighborhoods, *Journal of Urban Affairs*, 28(1), pp. 19-41. doi:10.1111/j.0735-2166.2006.00257.x
- Wheaton, W.C. & Nechayev, G. (2005). Does location matter? The journal of portfolio management.
- Whitehead, C., Sagor, E., Edge, A. & Walker, B. (2015). Understanding the Local Impact of New Residential Development: a Pilot Study. *London School of Economics and Political Science*: London, UK.
- Wilhelmsson, M., Ismail, M. & Warsame, A. (2021). Gentrification effects on housing prices in neighbouring areas. *International Journal of Housing Markets and Analysis*, 15(4), pp. 910–929. doi:10.1108/ijhma-04-2021-0049.
- Yin, L. & Silverman, R. (2015). Housing abandonment and demolition: Exploring the use of micro-level and multi-year models. *ISPRS International Journal of Geo-Information*, 4(3), pp. 1184–1200. doi:10.3390/ijgi4031184.

Zahirovich-Herbert, V. & Gibler, K.M. (2014). The effect of new residential construction on housing prices. *Journal of Housing Economics*, 26, pp. 1–18. doi:10.1016/j.jhe.2014.06.003.

Zapatka, K. & Beck, B. (2020). Does demand lead supply? Gentrifiers and developers in the sequence of gentrification, New York City 2009–2016. *Urban Studies*. doi:10.1177/0042098020940596.

APPENDICES

Appendix A. Data descriptives

Table 9. Definition of variables

Variables	Definition
Transaction price	Sales price of $property_i$ at time t
Near to planned redevelopment	Dummy 1 if the planned redevelopment project is within a 500-meter radius
projects	to the transaction of $property_i$, otherwise 0, where the planned
	redevelopment project is between the range of 500 to 1,000 meters to
	property _i
Far from planned redevelopment	Far from planned redevelopment projects in the range between 500-to-1,000-
projects	meter buffer to the sale of <i>property</i> _i
Near to no transformations	The transaction of $property_i$ is within 500-meter radius with no
	planned transformations
Far from no transformations	The transaction of $property_i$ is between the range of 500-to-1,000
	meter with no planned transformations
Near to planned demolition-and-	The transaction of $property_i$ is near to planned demolition-and-
development	development within 500 meters
Far from planned demolition-and-	The transaction of $property_i$ is far from planned demolition-and-
development	development between the range of 500-to-1,000-meter
Near to planned rehabilitation	The transaction of $property_i$ is near to planned rehabilitations within
	500meter radius
Far from planned rehabilitation	The transaction of $property_i$ is far from planned rehabilitations between the
	range of 500-to-1,000-meter
Near to both planned transformations	The transaction of $property_i$ is within 500-meter radius to both
	planned transformations of rehabilitation and demolition-and-
	development
Far from both planned transformations	The transaction of property _i is between the range of 500 -to-1,000
	meter both planned transformations of rehabilitation and demolition-
Single family house	Dummy 1 if <i>property</i> is a single family house 0 (apartment) otherwise
	Dufinity 1 in <i>property</i> is a single-family noise, 0 (apartment) otherwise
Surface area	Surface area of $property_i$ in square meters
Number of rooms	Number of rooms of <i>property</i> _i
Transaction year	Transaction year in which the $property_i$ is sold, time t
Territories	Location of $property_i$ in the twelve territories of the Greater Metropolitan
	Region of Paris
Observations	Total number of observations

Appendix B. Syntax from statistical software – Stata

Dataset of house transaction prices from the data source: Demandes de Valeurs Foncières (2023)

**Append datasets of all house prices in France of 2018-2023

use "D:\Master\Master Thesis\Paris Data\Geodata maybe\Geodata 2018 Q3-4.dta" append using "D:\Master\Master Thesis\Paris Data\Geodata maybe\Geodata 2019.dta", force append using "D:\Master\Master Thesis\Paris Data\Geodata maybe\Geodata 2020.dta", force append using "D:\Master\Master Thesis\Paris Data\Geodata maybe\Geodata 2021.dta", force append using "D:\Master\Master Thesis\Paris Data\Geodata maybe\Geodata 2022.dta", force append using "D:\Master\Master Thesis\Paris Data\Geodata maybe\Geodata 2022.dta", force append using "D:\Master\Master Thesis\Paris Data\Geodata maybe\Geodata 2022.dta", force append using "D:\Master\Master Thesis\Paris Data\Geodata maybe\Geodata 2023 Q1-2.dta", force

**Cleaning data of DVF

keep if nom_commun == "Argenteuil" | nom_commun == "Paray-Vieille-Poste" | nom_commun == "Athis-Mons" | nom_commun == "Juvisy-sur-Orge" | nom_commun == "Savigny-sur-Orge" | nom_commun == "Viry-Chatillon" | nom_commun == "Morangis" | code_depar == "92" | code_depar == "93" | code_depar == "94" | code_depar == "75"

drop if missing(surface_re) drop if missing(date_mutat) drop if missing(valeur_fon) drop if missing(code_type_) drop if missing(nombre_pie)

drop if code_type_=="Dépendance" drop if code_type_=="Local industriel. commercial ou assimilé"

duplicates report duplicates list duplicates drop duplicates report

drop if nature_cul=="jardins" drop if nature_cul=="terrains d'agrément"

duplicates tag id_mutation valeur_fon id_parcelle, generate(Duplicates_Homes) drop if Duplicates Homes>0

sum valeur_fon, d drop if valeur_fon<10800 drop if valeur_fon>2345000 *(1st percentile was at 10,800 and 99th percentile was at 2,345,000 so dropped past those values)

*Recode dummy variable housing type (1= house; 0=apartment) recode code_type_2=0

_pctile nombre_pie , percentiles(0.1 99.9) return list *(percentiles: scalars: r(r1) = 1; r(r2) = 9) drop if nombre_pie >9

split date_mutat, p(-) rename date_mutat1 year rename date_mutat2 month rename date_mutat3 day destring day, replace destring month, replace destring year, replace

gen modate=ym(year,month) format modate %tm

destring valeur_fon, dpcomma replace destring latitude, dpcomma replace destring longitude, dpcomma replace rename NEAR_FID near_fid rename oid_ in_fid

summarize valeur_fon code_type_ surface_re nombre_pie i.year

**Histogram histogram valeur_fon (bin=55, start=10800, width=42440) gen log_housevalue = log(valeur_fon) histogram log_housevalue (bin=55, start=9.2873011, width=.09782718)

Dataset of the planned redevelopment projects from the data source: APUR (2023)

**Cleaning the dataset of APUR

drop if missing(an_achev) drop if missing(nat_decons) drop if missing(c_projet) drop if missing(m2_planche)

recode nat decons 2=0

destring m2_planche, dpcomma replace egen NewConstruction = group(c_projet) recode NewConstruction 2=0 [0= non-built space; 1= building]

egen territories = group(l_epci)

rename oid_NEAR_FID

Datasets merged: APUR and DVF

use "D:\Master\Master Thesis\Data from November\Merge\Distance Merge all 3 datasets.dta" merge 1:1 in_fid using "D:\Master\Master Thesis\Data from November\House transactions\House Transaction inc FID.dta" rename _merge merge_transactions merge m:1 near_fid using "D:\Master\Master Thesis\Data from November\Demolition\Demolition Data Destring 8880 inc FID.dta"

**Cleaning the merged dataset drop if missing(in_fid) drop if missing(near_fid)

gen Distance = near_dist replace Distance = 1 if Distance<1000 drop if Distance>1

**Planned redevelopment projects: distinction between demolition-and-development and rehabilitation

generate n_total_ $500 = n_1_{500} + n_2_{500}$ generate n_total_ $1000 = n_1_{1000} + n_2_{1000}$

generate n_2 be $500_{1000} = n_2_{1000} - n_2_{500}$ generate n_1 be $500_{1000} = n_1_{1000} - n_1_{500}$ generate n_{total} be $500_{1000} = n_{total}_{1000} - n_{total}_{500}$

**Descriptive statistics for data within 500m radius summarize valeur_fon n_1_* n_2_*

gen $D_n_1_500 = (n_1_500 > 0)$ gen $D_n_2_500 = (n_2_500 > 0)$

gen GroupA = $(D_n_1_500==0)\&(D_n_2_500==0)$ gen GroupB = $(D_n_1_500==1)\&(D_n_2_500==0)$ gen GroupC = $(D_n_1_500==0)\&(D_n_2_500==1)$ gen GroupD = $(D_n_1_500==1)\&(D_n_2_500==1)$

summarize GroupA GroupB GroupC GroupD

g Group= 1 replace Group=2 if GroupB==1 replace Group=3 if GroupC==1 replace Group=4 if GroupD==1

tab Group bys Group: sum valeur_fon bys Group: sum valeur_fon code_type_ surface_re i.nombre_pie i.year i.Territory

**Descriptive statistics for data in 500 to 1,000-meter range gen D_n_1_500_1000 = (n_1_be_500_1000 > 0) gen D_n_2_500_1000 = (n_2_be_500_1000 > 0)

gen GroupZ = $(D_n_1_500_1000==0)\&(D_n_2_500_1000==0)$ gen GroupY = $(D_n_1_500_1000==1)\&(D_n_2_500_1000==0)$ gen GroupX = $(D_n_1_500_1000==0)\&(D_n_2_500_1000==1)$ gen GroupW = $(D_n_1_500_1000==1)\&(D_n_2_500_1000==1)$

summarize GroupZ GroupY GroupX GroupW

g Group500_1000=1 replace Group500_1000=2 if GroupY==1 replace Group500_1000=3 if GroupX==1 replace Group500_1000=4 if GroupW==1

tab Group500_1000 bys Group500_1000: sum valeur_fon bys Group500_1000: sum valeur_fon code_type surface_re i.nombre_pie i.year i.Territory

**Formation of dummies based on distance g D_n_total_500=0 replace D_n_total_500=1 if D_n_1_500==1 replace D n total 500=1 if D n 2 500==1

g D_far=0 replace D_far=1 if D_n_1_500_1000==1 replace D_far=1 if D_n_2_500_1000==1 tab D_far tab D_n_total_500

**Correlation matrix correlate valeur_fon Group Group500_1000 code_type surface_re nombre_pie year Territory pwcorr valeur_fon Group Group500_1000 code_type surface_re nombre_pie year Territory, star(0.05) pwcorr valeur_fon Group Group500_1000 code_type surface_re nombre_pie year Territory, star(0.01)

**Regression with dummies

reg log_housevalue D_n_total_500 code_type surface_re i.nombre_pie i.year i.Territory reg log_housevalue D_far code_type surface_re i.nombre_pie i.year i.Territory

**Regression of the types of redevelopment projects

reg log_housevalue Group code_type_ surface_re i.nombre_pie i.year i.Territory reg log_housevalue Group500_1000 code_type_ surface_re i.nombre_pie i.year i.Territory

*Table 5

**Regressions for dummy variable near (1), far (0)
reg log_housevalue D_n_total_500, robust
outreg2 using myfile, word dec(5) replace ctitle(model 1)
reg log_housevalue D_n_total_500 code_type_surface_re i.nombre_pie i.year, robust
outreg2 using myfile, word dec(5) append ctitle(model 2)
reg log_housevalue D_n_total_500 code_type_surface_re i.nombre_pie i.year i.Territory, robust
outreg2 using myfile, word dec(5) append ctitle(model 3)

*Table 7

**Multilinear regression with specific transformation types reg log_housevalue i.Group, robust outreg2 using myfile, word dec(5) replace ctitle(model 1) reg log_housevalue i.Group code_type surface_re i.nombre_pie i.year, robust outreg2 using myfile, word dec(5) append ctitle(model 2) reg log_housevalue i.Group code_type surface_re i.nombre_pie i.year i.Territory, robust outreg2 using myfile, word dec(5) append ctitle(model 3) reg log_housevalue i.Group i.Group500_1000, robust outreg2 using myfile, word dec(5) append ctitle(model 4) reg log_housevalue i.Group i.Group500_1000 code_type surface_re i.nombre_pie i.year, robust outreg2 using myfile, word dec(5) append ctitle(model 5) reg log_housevalue i.Group i.Group500_1000 code_type surface_re i.nombre_pie i.year i.Territory, robust outreg2 using myfile, word dec(5) append ctitle(model 5) reg log_housevalue i.Group i.Group500_1000 code_type surface_re i.nombre_pie i.year i.Territory, robust outreg2 using myfile, word dec(5) append ctitle(model 5)

*For table 8

**Chow test for house types

reg log_housevalue D_n_total_500 surface_re i.nombre_pie i.year i.Territory if code_type_== 1 reg log_housevalue D_n_total_500 surface_re i.nombre_pie i.year i.Territory if code_type_== 0 reg log_housevalue D_n_total_500 surface_re i.nombre_pie i.year i.Territory

**Chow test for territories

reg log_housevalue D_n_total_500 code_type_surface_re i.nombre_pie i.year reg log_housevalue D_n_total_500 code_type_surface_re i.nombre_pie i.year if Territory == 1 reg log_housevalue D_n_total_500 code_type_surface_re i.nombre_pie i.year if Territory == 2 reg log_housevalue D_n_total_500 code_type_surface_re i.nombre_pie i.year if Territory == 3 reg log_housevalue D_n_total_500 code_type_surface_re i.nombre_pie i.year if Territory == 4 reg log_housevalue D_n_total_500 code_type_surface_re i.nombre_pie i.year if Territory == 5 reg log_housevalue D_n_total_500 code_type_surface_re i.nombre_pie i.year if Territory == 6 reg log_housevalue D_n_total_500 code_type_surface_re i.nombre_pie i.year if Territory == 7 reg log_housevalue D_n_total_500 code_type_surface_re i.nombre_pie i.year if Territory == 8 reg log_housevalue D_n_total_500 code_type_surface_re i.nombre_pie i.year if Territory == 9 reg log_housevalue D_n_total_500 code_type_surface_re i.nombre_pie i.year if Territory == 10 reg log_housevalue D_n_total_500 code_type_surface_re i.nombre_pie i.year if Territory == 11 reg log_housevalue D_n_total_500 code_type_surface_re i.nombre_pie i.year if Territory == 12

*Table 6 **Removal of observations far from projects drop if Group500_1000>1 tab Group500_1000

**Regression
reg log_housevalue i.Group, robust
outreg2 using myfile, word dec(5) replace ctitle(model 1)
reg log_housevalue i.Group code_type_ surface_re i.nombre_pie i.year, robust
outreg2 using myfile, word dec(5) append ctitle(model 2)
reg log_housevalue i.Group code_type_ surface_re i.nombre_pie i.year i.Territory, robust
outreg2 using myfile, word dec(5) append ctitle(model 3)

**Generate a mutual exclusive group either near or far gen Group15 = 2 replace Group15=0 if Group==1 replace Group15=1 if Group500 1000==1

drop if Group 15 = 2

*Table 11

reg log_housevalue i.Group, robust outreg2 using myfile, word dec(5) replace ctitle(model 1) reg log_housevalue i.Group code_type surface_re i.nombre_pie i.year, robust outreg2 using myfile, word dec(5) append ctitle(model 2) reg log_housevalue i.Group code_type surface_re i.nombre_pie i.year i.Territory, robust outreg2 using myfile, word dec(5) append ctitle(model 3) reg log_housevalue i.Group i.Group500_1000, robust outreg2 using myfile, word dec(5) append ctitle(model 4) reg log_housevalue i.Group i.Group500_1000 code_type surface_re i.nombre_pie i.year, robust outreg2 using myfile, word dec(5) append ctitle(model 5) reg log_housevalue i.Group i.Group500_1000 code_type surface_re i.nombre_pie i.year i.Territory, robust outreg2 using myfile, word dec(5) append ctitle(model 5)

Appendix C. OLS assumptions

This appendix indicates whether the third model meets the assumptions of a linear regression. Furthermore, the possible consequences are described when the assumptions are not reached. Table 10 shows an overview of the technical notations and explanations of the five assumptions for linear regressions, as assessed by Brooks and Tsolacos (2010).

Table	10 Assum	ntions of	linear reg	ression (B	rooks &	Tsolacos	2010)
Table	IU. Assum	puons or	inical regi		TOOKS &	15014005,	2010)

Technical notation	Interpretation
1. $E(\varepsilon_t) = 0$	The errors have a zero mean [linearity]
2. $V(\varepsilon_i) = \sigma^2 < \infty$	The variance of the errors is constant and finite over all values of x_i [homoskedasticity]
3. $Cov(\varepsilon_i, \varepsilon_j) = 0$ for $i \neq j$	The errors are statistically independent of one another [no autocorrelation]
4. $Cov(\varepsilon_t, x_t) = 0$	There is no relationship between the error term and corresponding x variable [no endogeneity]
5. $\varepsilon_t \sim N(0, \sigma^2)$	ε_t is normally distributed [normality]

 $E(\varepsilon_t) = 0$ – Linearity

 $V(\varepsilon_i) = \sigma^2 < \infty$ – Homoskedasticity

 $Cov(\varepsilon_i, \varepsilon_j) = 0$ for $i \neq j$ – No autocorrelation

 $Cov(\varepsilon_t, x_t) = 0$ – No endogeneity

 $\varepsilon_t \sim N(0, \sigma^2)$ – Normality

Figure B. Histogram of transaction house value

Figure A. Residuals plot OLS regression

Figure C. Histogram of OLS regression, natural log of transaction value

Appendix D. Study area assertive in neighbourhoods in planned redevelopment projects occurring in poor neighbourhood quality

Figure D. Map of the study area in distribution of the median declared income of households (in EUR) (Insee, 2023).

2023/2024

Appendix E. Regression of planned redevelopment projects near versus far

Table 11. Regression of mutual exclusive observations regarding near versus far

	Natural logarithm of house transaction prices							
VARIABLES	(1)	(2)	(3)	(4)	(5)	(6)		
Only near planned project – within 500 m [no transformation as reference]								
Near to rehabilitation	0.26672^{***}	0.16940***	0.07053^{***}	0.33584***	0.20909^{***}	0.10631***		
Near to demo-and-dev	0.01399**	-0.01589***	0.03329***	0.08312***	0.02033***	0.06494***		
Near to both transformations	-0.11363^{***}	-0.14939***	-0.14557***	-0.04451***	-0.11358***	-0.11450***		
Only Far from planned project – 500 to 1,000 m [no transformation as reference]	(0.01170)	(0.01049)	(0.00757)	0.27017***	0.22407***	0.11(00***		
Far from demo-and-dev				(0.00743) 0.07182***	(0.00586) (0.0279***	(0.00503) 0.03368***		
Far from both transformations				(0.00377)	(0.00293)	(0.00241)		
Single-family house [yes = 1]		-0.19971*** (0.00488)	0.18548^{***} (0.00445)		-0.18823*** (0.00489)	0.18780***		
Surface area [in m ²]		0.01369***	0.01214^{***} (0.00014)		0.01345***	0.01203***		
Number of rooms [0 = studio as reference]		((((
1.		-0.16115***	-0.13853**		-0.15868***	-0.13733**		
2		(0.05941) 0.05950	(0.05822) 0.17126***		(0.05852) 0.07065	(0.05770) 0.17580***		
		(0.05944)	(0.05824)		(0.05856)	(0.05772)		
3.		0.07122	0.28245***		0.08927	0.28919***		
4.		0.00201	0.25839***		0.02278	0.26605***		
		(0.06013)	(0.05879)		(0.05925)	(0.05827)		
5.		-0.04317	0.17085***		-0.02332	0.17881***		
6.		-0.22458***	-0.03016		-0.19938***	-0.01987		
		(0.06257)	(0.06082)		(0.06171)	(0.06032)		
7.		-0.46004***	-0.25483***		-0.43029***	-0.24268***		
8.		-0.72410***	-0.51989***		-0.68499***	-0.50411***		
		(0.08435)	(0.08080)		(0.08360)	(0.08030)		
9.		-1.03534***	-0.75567***		-0.98981***	-0.73811***		
Transaction year		(0.1070))	(0.09000)		(0.10001)	(0.07/47)		
[2018 as reference]		0.00070***	0.00005***		0 0 2 2 4 7 * * *	0.00771***		
2019		$(0.033/8^{***})$	(0.03805^{***})		(0.0334/***)	(0.03771^{***})		
2020		0.08268***	0.09207***		0.08268***	0.09195***		
2021		(0.00489) 0.11621***	(0.00390) 0.11298***		(0.00486) 0.11574***	(0.00389) 0.11282***		
2022		(0.00484) 0.15014***	(0.00389) 0.12685***		(0.00481) 0.14923***	(0.00388) 0.12670***		
2023		(0.00478) 0.12826***	(0.00385) 0.08907***		(0.00474) 0.12749***	(0.00384) 0.08902***		
Territories		(0.00584)	(0.00475)		(0.00579)	(0.00473)		
[T1 Paris as reference]								
T2 Vallée Sud Grand Paris			-0.42688***			-0.42276***		
T3 Grand Paris Seine Quest			(0.00375)			(0.003//) -0.17947***		
T4 Paris Ouest La Défense			(0.00424)			(0.00430)		
T5 Boucle Nord de Seine			(0.00404) -0.53869***			(0.00399) -0.52600***		
			(0.00444)			(0.00444)		
T6 Plaine Commune			-1.15977*** (0.01640)			-1.14169*** (0.01645)		
T7 Paris Terres d'Envol			-1.06404*** (0.00511)			-1.06176*** (0.00514)		

T8 Est Ensemble			-0.55316***				
T9 Grand Paris - Grand Est		-0.92016***					
T10 Paris-Est-Marne & Bois		(0.00390) -0.47789***					
T11 Grand Paris Sud Est Avenir			(0.00429) -0.90049***			(0.00433) -0.89881***	
T12 Grand-Orly Seine Bièvre			(0.00475) -0.82341***			(0.00473) -0.81852***	
			(0.00389)			(0.00388)	
Constant	12.78836*** (0.00177)	11.90172*** (0.05953)	12.13794*** (0.05830)	12.71923*** (0.00303)	11.86511*** (0.05869)	12.10493*** (0.05780)	
Observations R-squared	174,884 0.00249	174,884 0.41184	174,884 0.61924	174,884 0.01302	174,884 0.41904	174,884 0.62101	

Notes: Dependent variable is the natural log of house transaction prices

Location fixed effects are on territory level (12-levels)

Variable: Far from both transformations is omitted because of collinearity Robust standard errors are in parentheses ***p<0.01; **p<0.05; *p<0.1

Appendix F. F distribution table

Table 12. F-statistic: distribution table [$\alpha = 0.05$], F (df1, df2)

/	df ₁ =1	2	3	4	5	6	7	8	9	10	12	15	20	24	30	40	60	120	00
df ₂ =1	161.4	199.5	215.7	224.6	230.2	234.0	236.8	238.9	240.5	241.9	243.9	245.9	248.0	249.1	250.1	251.1	252.2	253.3	254.3
2	18.51	19.00	19.16	19.25	19.30	19.33	19.35	19.37	19.38	19.40	19.41	19.43	19.45	19.45	19.46	19.47	19.48	19.49	19.50
3	10.13	9.552	9.277	9.117	9.014	8.941	8.887	8.845	8.812	8.786	8.745	8.703	8.660	8.639	8.617	8.594	8.572	8.549	8.526
4	7.709	6.944	6.591	6.388	6.256	6.163	6.094	6.041	5.999	5.964	5.912	5.858	5.803	5.774	5.746	5.717	5.688	5.658	5.628
5	6.608	5.786	5.409	5.192	5.050	4.950	4.876	4.818	4.772	4.735	4.678	4.619	4.558	4.527	4.496	4.464	4.431	4.398	4.365
6	5.987	5.143	4.757	4.534	4.387	4.284	4.207	4.147	4.099	4.060	4.000	3.938	3.874	3.841	3.808	3.774	3.740	3.705	3.669
7	5.591	4.737	4.347	4.120	3.972	3.866	3.787	3.726	3.677	3.637	3.575	3.511	3.445	3.410	3.376	3.340	3.304	3.267	3.230
8	5.318	4.459	4.066	3.838	3.688	3.581	3.500	3.438	3.388	3.347	3.284	3.218	3.150	3.115	3.079	3.043	3.005	2.967	2.928
9	5.117	4.256	3.863	3.633	3.482	3.374	3.293	3.230	3.179	3.137	3.073	3.006	2.936	2.900	2.864	2.826	2.787	2.748	2.707
10	4.965	4.103	3.708	3.478	3.326	3.217	3.135	3.072	3.020	2.978	2.913	2.845	2.774	2.737	2.700	2.661	2.621	2.580	2.538
11	4.844	3.982	3.587	3.357	3.204	3.095	3.012	2.948	2.896	2.854	2.788	2.719	2.646	2.609	2.570	2.531	2.490	2.448	2.404
12	4.747	3.885	3.490	3.259	3.106	2.996	2.913	2.849	2.796	2.753	2.687	2.617	2.544	2.505	2.466	2.426	2.384	2.341	2.296
13	4.667	3.806	3.411	3.179	3.025	2.915	2.832	2.767	2.714	2.671	2.604	2.533	2.459	2.420	2.380	2.339	2.297	2.252	2.206
14	4.600	3.739	3.344	3.112	2.958	2.848	2.764	2.699	2.646	2.602	2.534	2.463	2.388	2.349	2.308	2.266	2.223	2.178	2.131
15	4.543	3.682	3.287	3.056	2.901	2.790	2.707	2.641	2.588	2.544	2.475	2.403	2.328	2.288	2.247	2.204	2.160	2.114	2.066
16	4.494	3.634	3.239	3.007	2.852	2.741	2.657	2.591	2.538	2.494	2.425	2.352	2.276	2.235	2.194	2.151	2.106	2.059	2.010
17	4.451	3.592	3.197	2.965	2.810	2.699	2.614	2.548	2.494	2.450	2.381	2.308	2.230	2.190	2.148	2.104	2.058	2.011	1.960
18	4.414	3.555	3.160	2.928	2.773	2.661	2.577	2.510	2.456	2.412	2.342	2.269	2.191	2.150	2.107	2.063	2.017	1.968	1.917
19	4.381	3.522	3.127	2.895	2.740	2.628	2.544	2.477	2.423	2.378	2.308	2.234	2.156	2.114	2.071	2.026	1.980	1.930	1.878
20	4.351	3.493	3.098	2.866	2.711	2.599	2.514	2.447	2.393	2.348	2.278	2.203	2.124	2.082	2.039	1.994	1.946	1.896	1.843
21	4.325	3.467	3.072	2.840	2.685	2.573	2.488	2.420	2.366	2.321	2.250	2.176	2.096	2.054	2.010	1.965	1.916	1.866	1.812
22	4.301	3.443	3.049	2.817	2.661	2.549	2.464	2.397	2.342	2.297	2.226	2.151	2.071	2.028	1.984	1.938	1.889	1.838	1.783
23	4.279	3.422	3.028	2.796	2.640	2.528	2.442	2.375	2.320	2.275	2.204	2.128	2.048	2.005	1.961	1.914	1.865	1.813	1.757
24	4.260	3.403	3.009	2.776	2.621	2.508	2.423	2.355	2.300	2.255	2.183	2.108	2.027	1.984	1.939	1.892	1.842	1.790	1.733
25	4.242	3.385	2.991	2.759	2.603	2.490	2.405	2.337	2.282	2.236	2.165	2.089	2.007	1.964	1.919	1.872	1.822	1.768	1.711
26	4.225	3.369	2.975	2.743	2.587	2.474	2.388	2.321	2.265	2.220	2.148	2.072	1.990	1.946	1.901	1.853	1.803	1.749	1.691
27	4.210	3.354	2.960	2.728	2.572	2.459	2.373	2.305	2.250	2.204	2.132	2.056	1.974	1.930	1.884	1.836	1.785	1.731	1.672
28	4.196	3.340	2.947	2.714	2.558	2.445	2.359	2.291	2.236	2.190	2.118	2.041	1.959	1.915	1.869	1.820	1.769	1.714	1.654
29	4.183	3.328	2.934	2.701	2.545	2.432	2.346	2.278	2.223	2.177	2.104	2.027	1.945	1.901	1.854	1.806	1.754	1.698	1.638
30	4.171	3.316	2.922	2.690	2.534	2.421	2.334	2.266	2.211	2.165	2.092	2.015	1.932	1.887	1.841	1.792	1.740	1.683	1.622
40	4.085	3.232	2.839	2.606	2.449	2.336	2.249	2.180	2.124	2.077	2.003	1.924	1.839	1.793	1.744	1.693	1.637	1.577	1.509
60	4.001	3.150	2.758	2.525	2.368	2.254	2.167	2.097	2.040	1.993	1.917	1.836	1.748	1.700	1.649	1.594	1.534	1.467	1.389
120	3.920	3.072	2.680	2.447	2.290	2.175	2.087	2.016	1.959	1.910	1.834	1.751	1.659	1.608	1.554	1.495	1.429	1.352	1.254
œ	3.842	2.996	2.605	2.372	2.214	2.099	2.010	1.938	1.880	1.831	1.752	1.666	1.571	1.517	1.459	1.394	1.318	1.221	1.000

Appendix G. Regressions for Chow tests

Table 13. Regression of data for house types: pooled

Source	SS	df	MS		Number of obs.	=	348,279
Model	100373.432	27	3717.53452	_	F (27, 348251)	=	20313.10
Residual	63734.0113	348,251	0.183011711		Prob > F	=	0.0000
Total	164107.443	348,278	0.471196697	_	R – squared	=	0.6116
					Adj R – squared	=	0.6116
					Root MSE	=	0.4278
VARIABL	ES						
Transaction	n price	Coefficient	Std. err.	Т	P > t	[95% conf.	Interval]
Near to pla	nned project –	0277378	.0015115	- 18.35	0.000	0307003	0247754
within 500	m [1 as yes]						
Surface are	a [in m ²]	0128876	0000451	285 93	0.000	0127993	0129759
Surface are		.0120070	.0000431	205.75	0.000	.0127775	.0127757
Number of	rooms						
[0 = studio	as reference]						
	1.	0139707	.0277891	-0.50	0.615	0684366	.0404951
	2.	.2666447	.0277816	9.60	0.000	.2121934	.3210959
	3.	.3602047	.0278332	12.94	0.000	.3056524	.414757
	4.	.3278441	.027943	11.73	0.000	.2730766	.3826115
	5.	.2719594	.0281753	9.65	0.000	.2167366	.3271822
	6.	.1078937	.0287533	3.75	0.000	.0515381	.1642494
	7.	1014811	.0301394	-3.37	0.001	1605534	0424087
	8.	3131652	.0336204	-9.31	0.000	3790602	2472701
	9.	5985848	.0409401	-14.62	0.000	6788263	5183433
Transaction	n year						
[2018 as re	terence						
	2019	.0371471	.0026758	13.88	0.000	.0319027	.0423916
	2020	.0980869	.0027487	35.68	0.000	.0926995	.1034743
	2021	.1213007	.0027102	44.76	0.000	.1159888	.1266126
	2022	.133654	.0027221	49.10	0.000	.1283188	.1389892
	2023	.0934247	.0033856	27.60	0.000	.0867891	.1000603
Territories	s reference]						
T2 Val	lée Sud Grand Paris	3901495	.00302	-129.19	0.000	3960686	3842303
T3 Gran	nd Paris Seine Ouest	1857774	.0034903	-53.23	0.000	1926182	1789365
T4 Par	is Ouest La Défense	2160183	.0028959	-74.59	0.000	2216942	2103425
T5 B	oucle Nord de Seine	4579301	.003106	-147.43	0.000	4640178	4518424
10 D	T6 Plaine Commune	- 8565709	0035362	-242.23	0.000	- 8635017	- 8496401
Т7	Paris Terres d'Envol	- 9954	0038064	-261.51	0.000	-1 00286	- 9879395
17	T8 Est Ensemble	- 5819075	0031679	-183.60	0.000	- 5881165	- 5756984
T0 Cro	nd Daria Crand Est	3819073	.0031079	-165.09	0.000	3881105	3/30984
19 Ola		0934002	.0033328	-200.49	0.000	9000313	0000009
110 Pari	S-ESt-Marne & BOIS	3703349	.002931	-134.98	0.000	4041188	392331
111	Grand Paris Sud Est Avenir	- 809668	0041638	-194 45	0.000	- 8178289	- 801507
T12 Gran	d-Orly Seine Bièvre	7406891	.0028109	-263 51	0.000	7461983	7351798
112 Orall		., 1000/1		200.01	0.000	., 101905	.,
Constant		11.99398	.0278489	430.68	0.000	11.9394	12.04857

Source	SS	df	MS		Number of obs.	=	305,011
Model	91116.4521	27	3374.68341	_	F (27, 304983)	=	19571.66
Residual	52587.3247	304,983	.172427069		Prob > F	=	0.0000
Total	143703.777	305,011	.471144476	_	R – squared	=	0.6341
					Adj R – squared	=	0.6340
					Root MSE	=	0.41524
VARIABI	LES						
Transactio	on price	Coefficient	Std. err.	Т	P > t	[95% conf.	Interval]
Near to play within 500	anned project –) m [1 as yes]	0228333	.0015711	-14.53	0.000	0259125	019754
Surface ar	rea [in m ²]	.0159436	.0000539	296.04	0.000	.015838	.0160492
Number o [0 = studio	f rooms o as reference]						
	1.	.0036755	.0274377	0.13	0.893	0501016	.0574525
	2.	.2306888	.0274385	8.41	0.000	.1769102	.2844674
	3.	.2504163	.0275133	9.10	0.000	.1964909	.3043416
	4.	.146208	.0276641	5.29	0.000	.0919872	.2004288
	5.	.0208695	.028044	0.74	0.457	0340959	.0758349
	6.	3345447	.029562	-11.32	0.000	3924853	2766041
	7.	8302691	.034785	-23.87	0.000	8984467	7620915
	8.	-1.509855	.0518637	-29.11	0.000	-1.611506	-1.408203
	9.	-2.319515	.0934213	-24.83	0.000	-2.502618	-2.136412
Transactic [2018 as r	on year eference]						
	2019	.0405018	.0027741	14.60	0.000	.0350646	.045939
	2020	.1017027	.002849	35.70	0.000	.0961187	.1072867
	2021	.1188579	.0028152	42.22	0.000	.1133402	.1243755
	2022	.1262816	.0028259	44.69	0.000	.1207429	.1318203
	2023	.0870417	.0034967	24.89	0.000	.0801882	.0938952
Territories [T1 Paris a	s as reference]						
T2 Vall	ée Sud Grand Paris	4199058	.0031309	-134.12	0.000	4260423	4137693
T3 Gran	d Paris Seine Ouest	1991736	.0034863	-57.13	0.000	2060066	1923406
T4 Pari	s Ouest La Défense	233261	.0028987	-80.47	0.000	2389423	2275797
T5 Bo	oucle Nord de Seine	4796608	.0031943	-150.16	0.000	4859217	4734
Т	6 Plaine Commune	8601454	.0036742	-234.10	0.000	8673468	8529441
T7 F	Paris Terres d'Envol	-1.072998	.0047567	-225.57	0.000	-1.082321	-1.063675
	T8 Est Ensemble	5901865	.0033546	-175.93	0.000	5967614	5836116
T9 Gran	nd Paris - Grand Est	9417846	.0037645	-250.17	0.000	949163	9344062
T10 Paris	-Est-Marne & Bois	4057745	.0031066	-130.62	0.000	4118633	3996856
T11 C	Grand Paris Sud Est Avenir	8395268	.0044236	-189.78	0.000	848197	8308566
T12	2 Grand-Orly Seine Bièvre	7704361	.0029875	-257.89	0.000	7762915	7645807
Constant		11.90582	.0275152	432.70	0.000	11.85189	11.95975

Table 14. Regression of data for house type: apartments

Table 15. Regression of data for house type: single-family houses

Source	SS	df	MS		Number of obs.	=	43,268
Model	8387.59151	27	310.651538	_	F (27, 43240)	=	1733.13
Residual	7750.45027	43,240	.179242606		Prob > F	=	0.0000
Total	16138.0418	43.267	0.471196697	_	R – squared	=	0.5197
		-,			Adj R – squared	=	0.5194
					Root MSE	=	0.42337
VARIABL	LES						
Transactio	n price	Coefficient	Std. err.	Т	P > t	[95% conf.	Interval]
Near to pla	nned project –	000457	.0042576	-0.11	0.915	008802	.007888
within 500	m [1 as yes]						
Surface are	ea [in m ²]	.0059389	.000078	76.15	0.000	.005786	.0060918
Number of $0 = $ studio	rooms						
Lo studio	1	- 3082224	1509858	-2.04	0.041	- 6041575	- 0122874
	1.	- 1481095	149911	-0.99	0.323	- 4419379	1457189
	2.	- 0478467	1497888	-0.32	0.749	- 3414355	2457421
	4.	0052206	.1498279	-0.03	0.972	2988861	.2.884448
	5.	.0074315	.1499141	0.05	0.960	2864029	.3012659
	6.	.0273174	.150096	0.18	0.856	2668736	.3215084
	7.	.0121904	.150485	0.08	0.935	2827631	.3071439
	8.	0016969	.1513869	-0.01	0.991	2984181	.2950244
	9.	1069262	.1533758	-0.70	0.486	4075458	.1936933
Transaction	n year						
[2018 as re	eference]						
	2019	.0171754	.0075415	2.28	0.023	.002394	.0319569
	2020	.08393	.007762	10.81	0.000	.0687164	.0991436
	2021	.1323645	.0075384	17.56	0.000	.1175891	.14714
	2022	.1737683	.0076028	22.86	0.000	.1588668	.1886699
	2023	.1356718	.0098242	13.81	0.000	.1164163	.1549274
Territories	f						
T2 Val	ls reference	4694200	0205705	22 77	0.000	5087405	4201124
T2 Cros	ad Paria Saina Quast	4084309	.0203703	-22.77	0.000	308/493	4201124
T4 Dar	is Quest La Défense	2393470	.0231213	-10.30	0.000	2848037	1942295
14 rai T5 P	oucle Nord de Seine	510528	.021321	-14.45	0.000	3327093	2003404
15 0	T6 Plaine Commune	572522)	0212206	54.07	0.000	1 208011	1 124825
Т7	Paris Terres d'Envol	-1 227988	0201643	-60.90	0.000	-1.26751	-1.124625
17	T8 Est Ensemble	- 8615279	0205152	-00.90	0.000	- 901738	- 8213177
T9 Gra	nd Paris - Grand Est	-1.057657	0203132	-52 32	0.000	-1.097282	-1.018031
T10 Pari	s-Est-Marne & Bois	- 6222725	0203262	-30.61	0.000	- 6621122	- 5824327
T11	Grand Paris Sud Est		.0205202	20.01	0.000	.0021122	.5021527
	Avenir	9188343	.0214457	-42.84	0.000	9608682	8768004
T12 Gran	d-Orly Seine Bièvre	9154289	.0201503	-45.43	0.000	9549238	8759339
		13 2082	0278480	430.68	0.000	11 0304	13 50433
Constant		13.2002	.02/0707	120.00	0.000	11.7377	15.50755

Source	SS	df	MS		Number of obs.	=	348,279
Model	64696.6671	17	3805.6863		F (17, 348261)	=	13332.28
Residual	99410.7762	348,261	0.285449063		Prob > F	=	0.0000
Total	164107.443	348,278	0.471196697		R – squared	=	0.3942
					Adj R – squared	=	0.3942
					Root MSE	=	0.53427
VARIABLES							
Transaction prices	5	Coefficient	Std. err.	t	P > t	[95% conf.	Interval]
Near to planned project – within 500 m [1 as ves]		1402924	.0018256	-76.85	0.000	1438705	1367143
Surface area [in m	1 ²]	.0140486	.0000561	250.28	0.000	0.0139385	.0141586
Single-family hou	se [1 as yes]	1377207	.0030665	-44.91	0.000	1437309	1317104
Number of rooms							
[0 = studio as reference] 1.		0803922	.0347047	-2.32	0.021	1484124	012372
	2.	.1132216	.0346931	3.26	0.001	.0452242	.1812191
	3.	.1048977	.0347519	3.02	0.003	.0367849	.1730104
	4.	.0150963	.0348864	0.43	0.665	05328	.0834726
	5.	034345	.0351867	-0.98	0.329	1033099	.0346198
	6.	2065955	.0359249	-5.75	0.000	2770073	1361838
	7.	4238658	.0376632	-11.25	0.000	4976846	350047
	8.	651653	.0420129	-15.51	0.000	7339971	5693089
	9.	9723194	.0511493	-19.01	0.000	-1.07257	8720683
Transaction year							
[2018 as reference	e] 2019	.0354275	.0033416	10.60	0.000	.028878	.041977
	2020	.0880319	.0034324	25.65	0.000	.0813046	.0947593
	2021	.1216048	.0033846	35.93	0.000	.1149711	.1282384
	2022	.1542536	.0033986	45.39	0.000	.1475924	.1609148
	2023	.132052	.0042262	31.25	0.000	.1237687	.1403352
Constant		11.82614	.034772	340.11	0.000	11.75799	11.89429

Table 16. Regression of pooled data: territories