



# Effects of retail accessibility on commercial rental dwellings in the Netherlands

#### ABSTRACT

The commercial residential rental market is growing and (institutional) investors are curious how rental values can be optimized. This study investigates the influence of accessibility towards retail facilities on commercial residential rent. This revealed preference study applies a sample of 112,000 retail facilities and 44,160 commercial residential rent transactions. A network dataset measures actual travel distances between these two types of real estate using a Geographic Information System. Categorized retail facilities are used in a hedonic regression model, which result in residential rent discounts and rent premiums per retail category. This translates in attraction and repulsion effects from retail accessibility on residential rent. The most important finding of this study is that dwelling should result in a rent premium if a dwelling located near the fashion facilities, electronic stores supermarkets, media, department stores. Some facilities can result in rent premiums if they are accessible, but result in discounts if they are situated too proximate. This can be concluded for DIY stores.

#### KEYWORDS

Gravity model, accessibility, retail facilities, commercial residential rent, hedonic pricing model, GIS.

| Faculty:      | Spatial sciences (FRW)              |
|---------------|-------------------------------------|
| Study:        | MSc Real Estate Studies             |
| Student:      | Leo van den Heuvel                  |
| Student no.:  | S2614669                            |
| E-mail:       | Leo.van.den.heuvel@achmeavastgoed.n |
| Supervisor I: | dr. X. Liu                          |

Supervisor II: prof. dr. A. van der Vlist Supervisor III: drs. B. van der Gijp

Date:May, 2016Place:Amsterdam



"Everything is related to everything else, but near things are more related than distant things." - Tobler's ´first rule of geography´ (1970) -

## Index

| 1. Introduction                                                                                | 4  |
|------------------------------------------------------------------------------------------------|----|
| 1.1 Context                                                                                    | 4  |
| 1.2 Research questions                                                                         | 6  |
| 1.3 Overview                                                                                   | 8  |
| 2. Theoretical framework                                                                       | 8  |
| 2.1 Urban land economics                                                                       | 8  |
| 2.2 Rent determinants                                                                          | 9  |
| Table 1. Value and rent determinants according to a selected number of (accessibility) studies | 10 |
| 2.3 Retail facilities                                                                          | 11 |
| 2.4 Accessibility                                                                              | 11 |
| Table 2. Accessibility measures (location-based)                                               | 12 |
| 2.5 Conceptual framework                                                                       | 13 |
| Figure 1. Conceptual model of research methodology                                             | 14 |
| 3. Data & Methodology                                                                          | 15 |
| 3.1 Description of data                                                                        | 15 |
| Figure 2. Visualization of data                                                                | 16 |
| 3.2 Accessibility indices                                                                      | 16 |
| Figure 3: Details of network dataset                                                           | 17 |
| Figure 4. Theoretical example of accessibility measurement                                     | 18 |
| 3.3 Descriptive statistics                                                                     | 19 |
| Table 3: Descriptive statistics                                                                | 21 |
| 3.4 Empirical model                                                                            | 23 |
| 4. Empirical results analysis                                                                  | 23 |
| Table 4. Results                                                                               | 24 |
| 4.2 Retail accessibility                                                                       | 26 |
| 5. Conclusion                                                                                  | 28 |
| 5.1 Discussion                                                                                 | 28 |
| Literature                                                                                     | 29 |
| Appendix                                                                                       | 32 |

# 1. Introduction

## 1.1 Context

The Netherlands approximately counts three million rental dwellings. Around 90% of these houses are regulated dwellings (or social housing) where access is granted based on an income limit (Government, 2015). The remaining part belongs to the non-regulated market where tenants pay so-called *commercial residential rent*. Prices can be set freely within this market and there are no access criteria. Demand in the rental market as a whole has increased since the economic crisis around 2008, and the most profound increase can be perceived in the non-regulated market. The non-regulated rental market supply has traditionally been quite small due to a number of circumstances. Fiscal incentives, such as mortgage interest reduction, promote owner-occupying housing, and access to a mortgage was relatively easy. In addition, the income limit to let a social dwelling is only tested at the start of the letting period, which causes so-called 'scheefwonen', which literally can be translated as *skewed housing*<sup>1</sup>.

However, the circumstances to maintain a relatively small non-regulated rental market are changing (Ministry of Interior and Kingdom Relations, 2014). Dutch government policy reforms aim to diminish 'skewed housing' by enhancing the potential to increase rent (during the letting period) based on income. The fiscal incentive for owner-occupiers is still valid, but obtaining a mortgage will be harder as financing rules become more strict (Outlook Syntrus Achmea Real Estate & Finance, 2015). Consequently, forecasted demand for the non-regulated rental market rises, which is catalysed by long–term socio-economic trends. The forecasted population grows at least till 2044 (Duin & Stoeldraaijer, 2014), and the number of households increases due to smaller households and an ageing society. Flexible and temporary employment is on the rise in the labour market which contributes to an increased demand for a more flexible form of housing (Ministry of Interior and Kingdom Relations, 2014). Altogether, the non-regulated rental market supply is unable to absorb all (forecasted) demand, which initiates the investment market to anticipate (Outlook Syntrus Achmea Real Estate & Finance, 2015).

According to a Dutch institutional investors association (IVBN), investment demand in the nonregulated residential sector is high, financial resources are abundant, and locations for development need to be found (IVBN, July 2015). In order to satisfy demand, the consumers preference needs to be revealed and conferring rental prices need to be set. The *revealed preference* determines what a consumer is willing to pay for a certain characteristic, which is accomplished by analysing rented dwellings and their surroundings. Dwellings can be compared along their structural characteristics, and neighbourhood characteristics which can be achieved with a measurement coined as *accessibility*. Accessibility defines the *potential of opportunities for interaction* a consumer can accomplish by reaching various points of interest (Andersson et al., 2010; Hansen, 1959). Traditionally these opportunities relate to factors such as land, labour, and capital. These factors have been impacted by post-industrial and globalizing trends. Industrial impacts have left the city, and consumption has increasingly become more important than production (Lloyd & Clark, 2001). The role of facilitating consumption is extremely important for the success of cities and understudied (Glaser, Kolk & Saiz, 2001). Retail activities are important in modern urban life, since they influence social activities and

<sup>&</sup>lt;sup>1</sup>If income increases, after access is granted based on initial income, and exceeds the income limit during the rental period, the household does not have to vacate the regulated rental dwelling. As a consequence, a fair share of households in regulated rental homes actually have an income above the income limit (Government, 2014).

physical and environmental structures (Jang & Kang, 2015). Location efficient development, or new urbanism, shows that residential and retail facilities should be located in proximity to each other (Song & Sohn, 2007). This ultimately leads towards a greater sense of community, which attracts more residents (American planning association, 1998). Outcomes of previous research shows that easy access to retail stores results in a premium and raises property value by 5% of the mean property value in Florida (Des Rosiers, 1996). A retail accessibility study in Seoul concluded that some retail centers positively influenced residential attractiveness and some exerted negative influence, by distinguishing five different types of shopping centers based on their size, depending on their proximity (Jang & Kang, 2015). Accessibility towards various forms of transport in the Netherlands has been proven significant when explaining residential location choice (Zondag & Pieters, 2005), but effects of accessibility towards (retail) facilities on commercial residential rent are unknown within the Dutch real estate market. Current literature is opulent with information concerning residential values, i.e. owner-occupier prices and various forms of accessibility (Ottensmann et al., 2008). Even in the Dutch context several accessibility studies could be found (e.g. Geurs, 2004; Muhammed et al., 2008; van Wee et al., 2001), however all these studies focus on job-accessibility and none focus on retail accessibility. This seems odd since the classic accessibility paper of Hansen (1959) studied accessibility along job- opportunities and shopping opportunities. Another remarkable appearance within accessibility studies is the fact that the dependent variable mostly is expressed as the value of property, owner-occupier price or transaction price. In fact, hedonic pricing technique studies with rent as a dependent variable are studies much less, especially concerning the private non-regulated sector. Hoesli et al. (1997) were aware of this occurrence and their paper showed that the hedonic pricing technique could be applied to reveal the rental value within the private rental sector. However, they seemed focused on structural characteristics, and analysis of external effects was roughly executed.

Currently, accessibility studies are reviewed using a broad range of criteria and within different scientific fields which makes it a multifaceted concept. This often leads to poorly executed accessibility studies where accessibility is often misunderstood (Geurs, 2004). According to Geurs (2015) four basic perspectives can be distinguished: "(i) infrastructure-based measures, analysing the performance or service level of transport infrastructure, (ii) location-based measures, analysing accessibility of spatially distributed activities, typically on an aggregate level, (iii) person-based measures, founded in the space–time geography, analysing accessibility at the level of the individual level, and (iv) utility-based measures, analysing the welfare benefits that people derive from levels of access to the spatially distributed activities". In order to demarcate and categorize the perspective according to Geurs (2015), this study applies location-based measures with a gravity-based accessibility model. Subsequently, a hedonic price method links residential rent to the presence of retail facilities in vicinity and interprets the marginal prices as willingness to pay for this amenity.

An attempted contribution to current literature is made by analysing accessibility towards retail amenities with residential rent as a dependent variable. In order to analyse the willingness to pay, the housing market needs to be free of rent control and nonmarket allocation (Van Ommerren & Van der Vlist, 2016), therefore social rent will be ignored. Focus is on retail accessibility on a national level and this study tries to determine if accessibility is influential on the commercialized residential rent. The area of interest will be, in contrast to aforementioned studies who focus on a concentrated region, applied in the Dutch context and tries to extend knowledge of the non-regulated residential rent market. This study applies a *location-based* and *utility-based* perspective of accessibility towards retail and several control variables, i.e. non-retail facilities. Myriad factors that determine residential

rent will be summarized into structural, external (neighbourhood characteristics) and accessibility components on the basis of previous residential accessibility studies. An accessibility score will be determined on individual basis by analysing surrounding amenities per dwelling. This information will be aggregated with rent level and considering the assumption that a consumer strives for utility maximization, the revealed preference will be studied (utility-based perspective). Control variables and cluster error regression will be implemented to account for neighbouring influences. These variables include other distance influential facilities, e.g. CBD, schools, hospitals, highway ramps, train stations and restaurants. Commercial residential rent premiums and discounts will be revealed and the most influential retail facilities on rent will be determined. This results in a clear illustration of relevant rent determinants and will aid real estate investors in setting rent levels.

## 1.2 Research questions

The objective of this study is to explore the effects of accessibility towards amenities on commercial residential rental prices. This is conducted according the willingness to pay for the proximity of amenities, with the influence of accessibility. The situation as drafted in the previous paragraph and objective of the research define the following central question:

What is the willingness to pay for retail facilities in commercial rental markets and to which extent is accessibility towards facilities influential?

The main research question will be answered through the following research questions (RQ):

• RQ1. What are determinants of commercial residential rent?

Learning from earlier studies, the determinants of commercial residential rent will be investigated with a focus on accessibility. The applied structure will be a top down approach and key articles will shortly be discussed. A short, but broad view on urban land economics will be evaluated including Von Thunen (1826), Oates (1969), Muth (1969), and Alonso (1964) to underpin the importance of the central business district (CBD). Brueckner et al. (1999) summarize the insights of urban land economics and add the influence of amenities. The influence of amenities is an important factor of housing value and this matter is elaborated along the articles of Cheshire & Sheppard (1995), Small & Steimetz (2012), Kain and Quigley (1970) and Kauko (2003). When variables of previous studies are summarized, an analysis follows to underline the importance of external factors and accessibility (Hansen, 1959; Adair et al., 2000; Song & Sohn, 2007; Franklin and Waddell, 2003). An overview of previously applied accessibility measures will be established in order to select the most appropriate method. This chapter will present the literature review of this study and ends with a theoretical framework which contributes to the answer of the first research question, i.e.: commercial rent determinants.

#### • RQ2. How to model accessibility?

Previous chapter outlines the theoretical framework of the commercial residential rental market. The relation between amenities, accessibility and housing values has been studied before and findings of Andersson et al. (2010), Hewitt & Hewitt (2002) Martínez & Viegas (2009) and Franklin & Waddell (2003) are taken into account. To gain insights of the Dutch context, the study by Debrezion et al. (2006) will be described. Shortcomings and research methods of mentioned studies will be exemplified in order to apply an optimal model.

The applied perspective in this chapter will be *location-based accessibility*. There are several approaches to measure this type of accessibility: (i) the gravity-based model, (ii) the time approach,

and (iii) the distance approach. Analysis of mentioned approaches will determine how this study implements the effects of spatial accessibility and proximity to retail on residential rent. The *gravity based model* is the most advanced approach and analyses the interaction between housing and amenities. This is executed using the amount of retail and floor space. This method is derived from Newton's law of gravity which depicts the degree of interaction between two places with the influence of *distance decay*<sup>2</sup>. This approach delivers an accessibility index per dwelling, and has been applied within various accessibility studies (Weibull, 1976; Joseph & Bantock, 1982; Luo and Wang, 2003;). This chapter explains which factors influence rent values and tries to explain how a spatial accessibility index can be established.

Distances between dwellings and retail points will be measured with the appliance of shortest network routes with OpenStreetMaps (OSM) in combination with the network analyst function of a Geographic Information System (GIS)<sup>3</sup>. This approach accomplishes better estimates than Euclidean distance measures, and offers reliable and accurate results (Mikelbank, 2004). Different retail types (from fun shopping to daily shopping) will be distinguished along the categorization of Locatus. Locatus broadly categorizes three types of shopping: (i) daily shopping (ii) targeted shopping and (iii) comparative shopping, and each shopping type has their own catchment area. Accessibility will be measured as an index, based on an average of the different retail types, in terms of demand and supply according the gravity model (Hansen, 1959; Jang & Kang, 2015). To estimate demand, the shortest network route between each centroid of the catchment area (based on 15 minutes travel time) and each type of retail store will be measured and weighted by the number of households in each catchment area. As a result, an accessibility index will be estimated per household.

This chapter represents the operation of GIS-based analysis and ends with descriptive analysis of commercial rent determinants and an overview of accessibility scores per retail type.

RQ3. What is the impact of accessibility on commercial residential rent?

The location-based perspective which been applied in previous chapter, delivered an accessibility score per dwelling  $(A_i)$  and ensures an economic analysis from the *utility-based* perspective within this chapter. Hedonic regression will deliver the coefficients for the control variables and variables of interest.

The consumers preference will be revealed by their renting habits, and the choice made by consumers to settle on a specific location is assumed to maximize their utility. The basic theory behind this approach is that demand curves of households trace out how much a consumer is willing to pay extra for the addition of one unit of housing service, in this case 'one extra unit of accessibility'. The implicit price of such an attribute, represents the marginal valuation to consumers (Rosen, 1974). The *average willingness to pay* from a consumer point of view will be estimated using commercial residential rent within the Netherlands via the hedonic regression approach based on Rosen (1974).

<sup>&</sup>lt;sup>2</sup> The further apart residential and amenities are from each other, the less movement between them will occur. However, a larger retail store which is further away than a smaller retail store which is more proximate, will be preferred.

<sup>&</sup>lt;sup>3</sup> ArcMap

## 1.3 Overview

This study starts with a review of existing literature on house rent determinants, focusing on the impact of accessibility studies. This section starts with urban land economics in order to underline the importance the CBD and amenities in the context of rent and accessibility. Various accessibility indexes will be evaluated and an overview will be given of the most used variables in order to determine commercial rent determinants. The influence of accessibility will be measured using a GIS platform in order to determine the location based accessibility index per dwelling. Subsequently, descriptive statistics and an informed choice apply the most used rent determinants, combined with an individual accessibility to economic analysis. The utility based perspective determines the willingness to pay of accessibility. Main findings, conclusions and implications for real estate investors will be discussed in the final chapter.

# 2. Theoretical framework

Houses are differentiated and heterogeneous products and consist of a bundle of legal rights, structural characteristics and geographic characteristics. Consumers pay rent in order to receive utility. Lancaster (1966) determined that not the product itself creates utility, but its individual characteristics. Rosen (1974) used this "consumer behaviour theory" as a framework for his hedonic price modelling and stated that the value (or rent) is a composite value with underlying characteristics. The hedonic pricing model technique attempts to define the value of a certain characteristic. The hedonic model assumes that price (i.e. rent) embodies various characteristics and each characteristic is determined by an implicit price. Hedonic regression estimates coefficients which represent an implicit price per characteristic. This method results in the willingness to pay per determinant. This chapter attempts to define rent determinants based on existing literature, starting with basic urban land economics and analyses a variety of applied accessibility indexes within real estate context.

## 2.1 Urban land economics

The relationship between accessibility and housing value has been recognized by various key researchers within the scientific field of real estate. The first well-known research was performed by Von Thünen (1826), who described the trade-off between high rent, along with high accessibility and low transport costs, versus low rent with low accessibility and high transport costs. The central business district (CBD) forms the highly accessible center of a monocentric city, with negligible distance towards amenities. The further a house is situated from the CBD, the less rent is paid because of rising transport costs to reach the CBD (with abundance of amenities). This theory is termed as agricultural land-use and is hereafter extended with functions of zoning by Alonso (1964). Alonso claimed that retail, office or residential functions all compete (in the form of bidding) for the most accessible land. This translates in high floor space ratios in areas where amenities are abundant. Space for agriculture, which has the lowest bid-rent, determines the outskirt of the city.

Oates (1969) projected that, since the primary source of employment lies downtown, individuals prefer living close to the city center to optimize travel- or commuting time and corresponding costs. Therefore it is expected that property values vary inversely with distance from the CBD, ceteris paribus. Muth (1969) developed a different empirical model, which focused on income and locational preference. He argued that the locational preference of more rich residents would be on the outskirts of the city, since they could afford the corresponding travel costs, and property values are higher in suburbs. The model of Oates (1969) is built on the same principle as Von Thünen (1826) as is referred to as the "bid-price function". The model of Muth (1969) shows more similarity with Alonso (1964) and is referred to as the "standard model". These theories contradict

each other, but both are empirically validated significant. Brueckner et al. (1999) incorporated both insights and showed with an amenity-based theory that when the center has a strong amenity advantage over the suburbs, the rich are likely to live at central locations. When the amenity advantage of the center is weak or negative, the rich are likely to live in the suburbs. It could be stated that urban land economics is the traditional approach to understand the spatial distribution, with traditional factors like labour, transport costs and capital.

Although these traditional models can easily be criticized, due to the simplistic idea that housing prices decline with distance from the city, it holds an element of truth to this day (Ahlfeldt, 2011). However, several factors are less realistic in practice. An example is transport costs, which are assumed to be constant (per unit per kilometre) and location independent. In more recent time the influence of transport has been studied more often, and is generally studied along the lines of *accessibility*.

## 2.2 Rent determinants

The complex real estate market can be challenging to understand, since each (piece of) property is unique. Because of this heterogeneous character it is difficult to designate all variables that explain residential rent. Determinants of rent are extensive and inconclusive when tested. That is why Rosen (1974) associated observed prices as a set of implicit prices. Although many characteristics can be distinguished, a rough division can be made between structural characteristics and external characteristics in the owner-occupier market (Palmquist, 1984). Or more detailed characteristics like physical characteristics, location characteristics, amenities surrounding the dwelling, certain services and neighbourhood characteristics (Sirmans, 1989). When this study is put in context of the current time, and culture, not all variables seem relevant since maid service or security guards for example are the exception rather than the rule in the Dutch rental market. Therefore, a study which is performed closer to home could be more relevant. Although a Dutch study could not be found which was specifically aimed at rent determinants, a study performed in France showed a clear distinction between structural characteristics and external characteristics (Hoesli et al, 1997). This study showed that the most influential structural determinant on rent is floor space (when floor space increased with 1 m2, ceteris paribus, the rent increases on average by 30,71 Francs in Bordeaux). The most influential external characteristic on rent is the variable 'quality of neighbourhood'.

Table 1 shows the most applied determinants of nine selected studies concerning dwellings and accessibility, a more detailed presentation can be found in appendix I. Since determinants of owner-occupied housing appear comparable with rental dwellings (Malpezzi, 2003; Hoesli et al., 1997), both perspectives have been analysed.

|                    |                       | Α            | В            | С            | D            | E            | F            | G            | н            | I            |
|--------------------|-----------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
| Structural         | Age                   |              | $\checkmark$ | ✓            | $\checkmark$ | $\checkmark$ |              | $\checkmark$ |              | ✓            |
| characteristics    | Floor-space           | $\checkmark$ | $\checkmark$ | $\checkmark$ |              | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| (Xb <sub>1</sub> ) | Bath- or bedrooms     |              |              |              |              |              |              |              |              |              |
|                    | (#)                   |              |              |              | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |              | $\checkmark$ |
|                    | Parking/Garage        |              |              |              | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |              | $\checkmark$ |
|                    | Garden                |              |              |              |              |              | $\checkmark$ | $\checkmark$ |              |              |
| External           | Education in district |              |              | $\checkmark$ |              | ✓            | $\checkmark$ |              |              |              |
| characteristics    | Distance to CBD       | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |              |              |              |
| (Xb <sub>2</sub> ) | Distance to park      | $\checkmark$ | $\checkmark$ |              | $\checkmark$ |              |              |              |              |              |
|                    | Population density    |              | $\checkmark$ |              | $\checkmark$ |              | $\checkmark$ | $\checkmark$ | $\checkmark$ |              |
|                    | Income                |              |              |              | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| Study Area         |                       | ASIA         | ASIA         | USA          | USA          | USA          | EU           | EU           | EU           | EU           |
|                    |                       |              |              |              |              |              |              |              |              |              |

Table 1. Value and rent determinants according to a selected number of (accessibility) studies

A: Andersson et al., (2010) B: Jang & Kang (2015) C: Song & Sohn (2007) D: Hewitt & Hewitt (2002) E: Ottensmann et al. (2008) F: Dorantes et al. (2011) G: Debrizion et al. (2006) H: Öner (2013) I: Adair et al. (1999)

From analysis of table 1, and appendix I, it could be stated that there is no clear delineation of rent characteristics. This can be caused due to a number of reasons. First of all, from the detailed presentation in appendix I, some geographical differences appear. Hot climates include airconditioning in their OLS regression, while colder climates include central heating. Cultural differences can also be seen, since two out of three studies performed in the United States included the percentage of black people as external (neighbourhood) characteristic, where other studies completely neglect this topic. Another difference is that structural- and external characteristics are mostly applied as control variables within accessibility studies, and not its underlying characteristics. Although differences in explaining variables across studies are demonstrated, similarities can be observed as well. Overall, the studies applied a hedonic price technique with OLS. Floor-space seems the most applied, influential and significant, structural characteristic when explaining residential rent. Secondary is distance towards the CBD. When focusing on the European context, floor-space is implemented persistently, the number of rooms and whether a parking facility is incorporated also seems relevant. Distance towards the CBD seems less applied within the European context, which seems extraordinary given the insight of Ahfleldt (2011) as mentioned in paragraph 2.1.<sup>4</sup> Multiple studies proved significant results with different characteristics included in their final best performing model. A somewhat disappointing conclusion from this analysis could be that there is no universal approach or clear demarcation of which residential variables should be used, or applied. Another remarkable case is the absence of energy consumption of a dwelling. According to Santin et al. (2009) energy labels form an important structural determinant within the Dutch residential sector, since energy-consumption of a dwelling can be explained for 42% by building characteristics. Although this variable is neglected thus far in the accessibility literature, it could be an important variable to include in the hedonic regression. Energy labels intuitively influence rent, since more energy efficient

<sup>&</sup>lt;sup>4</sup> An explanation for this occurrence is when a researcher includes distance to CBD as an explanatory variable, the underlying assumption is that the city is monocentric (Dubin, 1992). The large European cities in which the study has been performed could be typified as more polycentric, for which distance to CBD is less appropriate, than monocentric.

dwellings yield less monthly costs for utilities. This could be an important determinant on rent to implement in the hedonic regression within this thesis.

## 2.3 Retail facilities

The geographic location of dwellings are measured towards retail facilities. Retail facilities, or shopping amenities, simultaneously exert attraction as well as repulsion effects which impact the value of dwellings and location choice for households' (Des Rosiers et al., 1996). Convenience gained from retail amenities is the ease of access with associated low cost of travel, and negativity arises from noise or congestion issues which a too great proximity towards retail center generates (Des Rosiers et al., 1996; Kholdy et al., 2014). As mentioned in the first paragraph of this chapter, the price of housing decreases the further one is situated from the CBD (Ahlfeldt, 2001). This traditional approach is applied in many hedonic studies as a distance measure in the baseline model. In short, three types of location-based accessibility perspectives can be distinguished: (i) the distance approach, (ii) the time approach, (iii) the gravity-based model (see table 2). The relatively complicated spatial pattern, of retail and housing, can thus be analysed in various ways. The distance approach can be typified as the most simply method. This method expresses distance between two points as a straight line and neglects infrastructural influences. This type of measurement is often applied in studies which attempt to measure proximity. The time approach is often applied within transport studies and accounts for infrastructural influences, and often congestion. The gravity model is usually applied within real estate studies, since it accounts for demand and supply. An important feature of the gravity model is the implementation of floor space which influences attractiveness. Attractiveness of a retail facility rises along with floor space. The larger the shopping center, the further a consumer is willing to travel for this opportunity and thus a larger catchment area arises (Reilly, 1929). Larger catchment areas are subsequently associated to be more accessible for households' according the gravity model methodology (Lou & Qi, 2009).

## 2.4 Accessibility

Before accessibility will be analysed, the quote of a famous geographer seems appropriate to mention: "Accessibility is a slippery notion...one of those common terms that everyone uses until faced with the problem of defining and measuring it" (Peter Gould, 1969). Therefore, a short clarification of this concept seems in place. Hansen (1959) described accessibility in his ground-breaking study as the "potential of opportunities for interaction". Dalvi & Martin (1976) described accessibility as the "ease with which any land-use activity can be reached from a location using a particular transport system". Or "the freedom of individuals to decide whether or not to participate in different activities" (Burns, 1979). Geurs & van Wee (2004) describe accessibility in their well-cited study as: "accessibility measures are seen as indicators for the impact of land-use and transport developments and policy plans on the functioning of the society in general". In this (retail) accessibility study, accessibility will be described as the "potential of opportunities for interaction a consumer can accomplish by reaching various retail facilities". Accessibility studies have been applied within many scientific fields, such as urban geography, spatial economics and transport engineering. As a consequence, different approaches with different structures or different distance decay parameters can lead to very different conclusions regarding the same study area (Geurs, 2015). The perspective of a study, just as the description of the term accessibility, needs to be clear. Four perspectives within accessibility can be distinguished: (i) infrastructure-based measures, analysing the performance or service level of

transport infrastructure, (ii) location-based measures, analysing accessibility of spatially distributed activities, typically on an aggregate level, (iii) person-based measures, founded in the space-time geography, analysing accessibility at the level of the individual level, and (iv) utility-based measures, analysing the welfare benefits that people derive from levels of access to the spatially distributed activities (Geurs & van Wee, 2004). This thesis focusses on location-based measures, where accessibility will be expressed as an index per dwelling in relation to retail facilities.

| Accessibility as | Measurement                                                                                         | What is measured?                                                                                                       | Observation                                                                                      |
|------------------|-----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| Distance         | Straight line proximity<br>measurement <sup>D,E,G</sup>                                             | Distance between<br>dwelling and amenity                                                                                | Does not distinguish the size of retail facilities                                               |
|                  | Proximity measurement with shortest route <sup>A</sup>                                              | Distance between<br>dwelling and amenity<br>using 'shortest network<br>route'                                           | Does not distinguish the size of retail facilities                                               |
|                  | Gravity model including<br>demand <sup>H,G,I,</sup>                                                 | Distance and size of<br>store determine demand<br>and supply                                                            | Does not incorporate<br>travel time                                                              |
|                  | Mixed Geographically<br>weighted regression <sup>B</sup>                                            | Measurement how<br>relationships vary locally<br>in relation to global<br>relationship (which is<br>performed with OLS) | Advanced and<br>complicated technique,<br>but only the global<br>relationship was<br>significant |
| Time             | Gravity model <sup>F</sup>                                                                          | Interaction over distance<br>and size                                                                                   | Accounts for spill-over<br>effects, and is aimed at<br>one type of transport                     |
| Distance & Time  | Straight line proximity<br>measurement compared<br>with time measurement in<br>minutes <sup>C</sup> | Comparison which<br>parameter performs<br>better                                                                        | City is observed as<br>monocentric model,<br>where amenities only<br>are situated In CBD         |

| Table 2 Accordibility managuras  | (location bacad) |
|----------------------------------|------------------|
| I able 2. Accessibility measures | 10cation-Daseu   |
|                                  | ( )              |

A: Andersson et al., (2010) B: Hewitt & Hewitt (2002) C: Ottensmann et al. (2008) D: Dorantes et al. (2011) E: Debrizion et al. (2006) F: Öner (2013) G: Jang & Kang (2015) H: van Eck & De Jong (1999) G: Adair et al. (1999) I: Song & Sohn (2007)

A baseline gravity model expresses demand for activities, with linear distance decay, and interprets supply based on size of the activity (in this study floor space of retail facilities). This approach reflects a trade-off between distance and size, and has no straightforward interpretation since size and distance are assumed substitutes. In order to improve this feature of the model, the influence of travel cost can be added. The declining cost function of travel can be expressed in distance or time (Ottensmann et al., 2008). This approach expresses households' demand as an economic indicator and assumes a linear relationship. However, demand can also be observed as non-linear, i.e. the demand drops exponentially when travel distance increases. This contribution is expressed as 'beta' ( $\beta$ ) and is sometimes empirically determined, since this coefficient cannot be estimated with OLS regression of the hedonic model, or simply set to 1 and/or 2 (Jang & Kang, 2015). This approach assumes that locations are equally attractive, since the influence of different submarkets is neglected. If residential submarkets are taken into account within accessibility measurement, the variables vary enormously between spatial areas (Adair et al., 1999). This results in spatial fragmentation with localized effects, in the context of the study performed by Adair et al. (1999), for the job-market. Models with spatial

submarkets demonstrate that location-based accessibility has an influence on housing prices. An issue, when attempting to apply this method, is that the deterrence function cannot not be empirically determined, and it is estimated based on non-proprietary traffic data. In addition, travel cost determination is based on modal split technique derived from a transport study in the same study area. Although this measure seems accurate it is also time-consuming, especially when national effects are analysed, and is dependent of traffic data.

Analysis from the literature shows that the submarkets in the dependent variable, residential sector, are often implemented. However submarkets in independent variables, retail facilities, are neglected. This proposition assumes that consumers are willing to travel the same distance for daily shopping, as non-daily shopping. An improvement could be the implementation of individual distance decay parameters per submarket. A contribution from this thesis could be implementing a retail accessibility model by measuring accessibility towards different types of retail facilities. This contribution is based on the job-accessibility study by Adair et al. (2009). When submarkets are distinguished in the dependent variable, and distinction is made in independent variable, outcomes vary highly (Franklin & Waddell, 2003). A way of improving this model further is to measure the size effect of the independent variable, i.e. the size of a retail store functions as a proxy for retail attractiveness (Song & Sonh, 2007). This type of proxy for attractiveness has been applied by several researchers before (Weibull, 1976; Joseph & Bantock, 1982; Shen 1998; Luo & Wang, 2003; Lou & Wang, 2003). This measure accounts for supply and demand of retail facilities. Demand is measured based on the distance from retail facility towards other households, and weighted by the distance from each retail store. Attractiveness however is not only influenced on the supply side, but also on the demand side. The demand side is determined by households which are likely to shop at a certain retail facility. The likelihood to shop at such a facility is determined by the distance between the dwelling and type of retail facility. The Dutch retail market can be distinguished in six main branches: (i) daily shopping, (ii) fashion & Luxury, (iii) entertainment, (iv) transport & fuel, (v) leisure, and (vi) services (Locatus, 2015). Daily shopping could be equipped with a higher beta than retail within the fashion & luxury category, since consumers are more inclined to purchase groceries in less distant retail facilities. Ideally, the value of beta's should be estimated empirically, rather than ex-ante, using a trial-and-error approach (Sohn & Song, 2007).

## 2.5 Conceptual framework

The aim of this thesis is to determine the willingness to pay for retail amenities in the commercial residential rent market. The first step in order to execute the spatial model is to construct a research method, and this is visualized as step (1) in figure 1. The characteristics of rent can globally be categorized into structural- ( $b_1X_s$ ) and external characteristics ( $b_2X_E$ ). This categorization can be determined more specifically, as analysis shows from paragraph 2.2., but for simplicity reasons this division remains. Variables have been assigned along this categorization. Although no universal method could be found to determine commercial residential rent variables, the most applied variables of commercial rent, or derivatives, have been summarized (table 1). In step (2) of figure 1, at least floor-space, energy label and age seem appropriate to incorporate. As external characteristics distance towards CBD and other non-retail facilities seem appropriate variables to include in the hedonic regression. In step (3), the accessibility index of choice will be a gravity model, including supply and demand, with shortest network routes between retail and dwellings. Distance decay parameters should be different per retail category, which distinguish submarkets.

The dependent variable is commercial residential rent and it should be checked whether accessibility has a significant effect on residential rent. If a significant relationship can be determined, the next step (4) is to measure the willingness to pay for accessible dwellings. The hypothesis which will be tested is that retail accessibility has a positive effect on rent, i.e. higher accessibility scores contribute to higher rents. For this hypothesis structural and external characteristics are included along with the accessibility index. When results are estimated, the willingness to pay for accessible retail amenities can be determined. The conceptual framework is visualized in figure 1.



Figure 1. Conceptual model of research methodology

# 3. Data & Methodology

## 3.1 Description of data

This study focusses on the Netherlands. The cross-sectional data of commercial rent is provided by Syntrus Achmea Real Estate & Finance (further: SAREF). This dataset initially contains roughly 70,000 rental transactions between 2008 and 2015(Q1) gathered from several institutional Dutch investors<sup>5</sup> and is bundled by MSCI/IPD. The minimum rent, which defines the lower limit of commercial rent, is set per year according to 'liberalization-limits' which were then in force, see appendix II. Since liberalization limits used to be set midyear, end of Q2, the rental limit of 2007 is applicable for dwellings which were rented out in Q1 and Q2 of 2008. This leads towards a minimum rent of €622 in the applied sample<sup>6</sup>. All rent levels above the liberalization limit (€710.68 price level 2015) are free of rent control. The Dutch law sets no upper limits to commercialized rent, as opposed to other definitions<sup>7</sup>. Market evidence of rental dwellings where prices are determined freely, i.e. the whole Dutch residential commercial rental market is of key interest. A portion of rents, however, were excluded due to the fact that they included missing values, could not be classified as commercial rent, could not be spatially geocoded or could be typified as an outlier. The remaining 44,160 rental transaction are based on starting lease rent. Since the data is not specific enough to distinguish repeated rent transactions, due to lack of housing numbers, the data cannot be typified as panel data and could possess repeated observations.

Data of retail locations is provided by Locatus. Locatus is the market leader in the field of independently sourced retail information in the Benelux. Since the Netherlands is the area of interest, all Dutch retail data was initially collected. Locatus conveys extensive samples where retail facilities are spatially specified with X and Y coordinates, which enhances geocoding significantly. The retail data initially counts 250,000 observations and separates 29 different retail categories. However, less than half of these facilities *do not* include net leasable floor space (expressed per m2), thus are excluded from the sample. Thus, the applied set contains roughly 112,000 retail facilities and expands over 16 categories, see appendix III. Applied retail facilities (marked black) and dwellings (marked blue) can be seen in figure 2.

Data of non-retail facilities are provided via the Central Bureau of Statistics (CBS), which delivers geographic information on municipality and neighbourhood level<sup>8</sup>. This information is aggregated in a shapefile where data could be projected, on the fly, over residential geocoded data. This results in closest distances to various facilities based on four digit-postal codes. Examples of these non-retail facilities are hospitals, schools, highway ramps and shopping centers. Note that shopping centers are not the same the retail facilities, since they are expressed as a concentration of retail facilities, but however seems moderately correlated, see appendix X. Locational variables such aggregated income levels, population density and the quantity of surrounding commercialized rental dwellings are expressed on four-digit level and are provided by ABF research<sup>9</sup>.

<sup>&</sup>lt;sup>5</sup> Altera Vastgoed, Amvest, Bouwinvest, CBRE Global Investors, Delta Lloyd Vastgoed, Eigen Haard, Vesteda and Syntrus Achmea Real Estate & Finance.

<sup>&</sup>lt;sup>6</sup> Inflation is assumed to be incorporated in the transaction rent, since prices are set quarterly, and is controlled for by implementing yearly indicator variables.

<sup>&</sup>lt;sup>7</sup> IVBN, Association of Institutional Property Investors in The Netherlands, typifies commercial rent between liberalization limit and €1,200; since rent above this level competes with the owner-occupier market.

<sup>&</sup>lt;sup>8</sup> Wijk- en Buurtkaart 2013

<sup>&</sup>lt;sup>9</sup> Vastgoedmonitor database



Figure 2. Visualization of data (source: MSCI, Locatus, SARE&F, processed by author)

## 3.2 Accessibility indices

As mentioned in the introduction of this thesis, accessibility is defined as the "potential of opportunities for interaction a consumer can accomplish by reaching retail facilities". In order to measure this potential, a twostep, gravity model is applied. This model determines an accessibility score per dwelling, based on *supply* and *demand*. This method does not assume an artificial line or circle that defines retail as inaccessible (Wang & Minor, 2002). The key influencing factors within this model are distance, floor space and competition among households.

Supply is a measurement of retail floor space and the distance. This assumes that if a store has a larger capacity for goods and customers, it therefore provides a higher level of accessibility to area residents (Song & Sohn, 2007). Supply is weighted by the distance a consumer has to travel. Distances between two points, such as dwelling A and retail facility B, can be measured in various ways. The first distinction is made between infrastructure distance, and Euclidian distance (straight-line distance). Straight-line distance captures spatial proximity per dwelling. However, this does not accurately measure accessibility between dwellings and retail facilities from the perspective of this study. This study is focused on accessibility *via roads*, where distance will be measured from dwellings, towards retail facilities using infrastructural network distance. In order to measure this distance, an underlying network dataset in a GIS has been established with OpenStreetMaps (OSM)<sup>10</sup>. Roadways of the Netherlands, downloaded via Geofabrik.de (2015)<sup>11</sup>, were imported in a GIS by establishing a network dataset. This dataset basically exists of roughly 3 million lines or edges as ArcMap identifies them, and 2 million dots, i.e. junctions. Lines determine length in meters, and dots determine directions. Configuration of the network dataset is set to exclude bike-paths, waterways and pavements, and roadways and highways are of interest for this study. The network dataset determines the shortest route for a car, originating from a dwelling, towards various retail facilities using an Origin-Destination (OD) matrix. The OD matrix originates from a commercial rent dwelling towards the closest five retail facilities per category. Since sixteen categories are distinguished, ninety routes are measured from a single dwelling. In total roughly 4.2 million directions calculated using this method, due to some loose network links. Figure 3 provides a detailed visualization of the network data-set build-up.



Figure 3: Details of network dataset (blue dots represent commercial dwellings in Amsterdam)

Demand is expressed as competing households, since the amount of residents within a dwelling is unknown in available sample. Data concerning competing households are provided by CBS and are as detailed as 100 by 100 meter census blocks. However, a slightly rougher measurement, four digit postal codes, fits the data more accurately. Households in the sample are expressed by commercialized rent transactions, which form a proxy of demand. These 44,160 households, typified

<sup>&</sup>lt;sup>10</sup> OSM is open-source nonproprietary data, which is driven by an active voluntary community with more than two million registered users. These users contribute geographical information via their smartphone, GPS-devices, and via automated imports using aerial photography and other inputs

<sup>&</sup>lt;sup>11</sup> <u>http://download.geofabrik.de/europe/netherlands.html</u>

as dwellings, are geocoded with a GIS using an address locator based on street addresses from BAG<sup>12</sup>. Demand / competition for retail facilities amongst households' can now be based on actual travel distance, via the OSM network dataset, towards a certain postal code. The amount of households per postal code that are within 15, 30, 45 and 60 minutes of travel time are set, e.g. 677,420 households can reach zip code 1011 within 15 minutes of driving time. Since Dutch travel time surveys towards different retail categories are unknown, and it is quite arbitrary to allocate a maximum travel time to a certain retail, the author has chosen to set the maximum travel time to 15 minutes for all retail categories.

To summarize, accessibility will be measured along supply and demand for each household and results in an accessibility index per dwelling. The implementation can be summarized as follows: The first step, step 1 in figure (4), calculates road network distance from a dwelling towards the five most proximate retail facilities (delimited per category), and is multiplied with gross leasable area (GLA). This measurement determines attractiveness of a retail facility, which is a proxy for demand. This step is expressed in the first part of the numerator in equation (4). The second step in figure (4) represents a measurement from this aforementioned retail facility and determines its accessibility based on competition, i.e. all households within 15 minutes of travel time. Distance is now measured from the retail facility, e.g. one the closes five facilities in previous measurement, towards all competing households within a 15-minute travel time radius<sup>13</sup>. The sum of the distance is multiplied by the sum of all road distance between retail and dwellings within the sample<sup>14</sup>. This forms a proxy for supply, and is expressed in the first part of the denominator in equation (4). Thus the supply-side of households' accessibility towards retail facilities is an aggregation of its relation towards all accompanying retail within 15-minute travel distance radius.



Figure 4. Theoretical example of accessibility measurement

With the inclusion of competition, accessibility *cannot* be interpreted as a simple trade-off between floor space and distance. However, the role of distance, and the rent effect of proximity towards various facilities is not incorporated yet. Some studies interpreted this matter as the 'cost of travel' (Lacono, Krizek and El-Geneindy, 2008) and stated that the price a household is willing to pay to reach a facility should be expressed as distance decay (Beta or  $\beta$ ). Other accessibility studies applied the same line of thought but interpreted Beta as an interaction measure (Nakanishi & Cooper, 1974).

<sup>&</sup>lt;sup>12</sup> BAG is an abbreviation for (roughly translated from Dutch) Registration Addresses and Buildings.

<sup>&</sup>lt;sup>13</sup> Underlying data is based on a travel survey performed by CBS from 2012.

<sup>&</sup>lt;sup>14</sup> This deviation of the original Gravity model was necessary, due to the combination of a large dataset and the absence of advanced computational hardware. Distance should be based on all households and retail facilities within the Netherlands.

When beta is small, impedance is low and accessibility is high and vice versa. Beta can thus be interpreted as the inverse of accessibility, since the higher beta becomes, the higher the unwillingness to travel towards a retail facility (Harris & Rubinfeld, 1978).

Note, that the unwillingness to travel, or the less proximate a household is situated next to a facility, does not imply that rent effect(s) diminish. As a matter of fact, intuitively it could be rationalized that households want to have access to certain facilities, but do not want to position themselves precisely next to it. In order to catch this effect on rents, the accessibility-index should ideally include multiple levels of distance decay. This study applies two forms of distance decay, which will be set to  $\beta$ =1 and  $\beta$ =2, in line with the studies of Jang & Kang (2015) and Song & Sohn (2007). Based on the available data and estimated measurements, the gravity model can now be determined. The method to score each individual dwelling on accessibility can be summarized with the following equation (4).

$$A_{i} = \sum_{i=1}^{n} \frac{S_{j} d_{ij}^{-\beta}}{\sum_{k=1}^{m} D_{K} d_{kj^{-\beta}}}$$
(4)

 $A_i$  is the accessibility index of dwelling *i*. *n* is the number of retail stores per category (fifteen categories have been distinguished). S<sub>j</sub> depicts the gross leasable area of retail store *j*. d<sub>ij</sub> is the shortest route between dwelling *i* and retail store *j*. d<sub>k</sub> describes the number of households within a fifteen minute radius. d<sub>kj</sub> is the distance between retail and dwellings.  $\beta$  the distance decay parameter. *M* is the number of households and *k* describes the dummy variables (dwelling type, building age, transaction year). This approach states that interaction between locations is positive and distance between them is negative, hence the negative beta. This approach will be executed per dwelling, and since retail categories are distinguished, sixteen different accessibility scores will be calculated per dwelling. The interpretation of the score itself at this point is somewhat fuzzy, since a higher score does not imply better accessibility. The interpretation of this score becomes clear after OLS<sup>15</sup> regression and hopefully explains the variance of rent within the Netherlands.

## 3.3 Descriptive statistics

Table 3 shows the descriptive statistics of the variables which should be included in the model according to the literature review. Fortunately all variables could be gathered, although some in an aggregated form, and will be applied in the future models. A slight adjustment was performed since the dependent variable, rent per month, looks slightly skewed when plotting a histogram, see appendix IV. The solution was to transform the dependent variable using a natural log. This also applies for floor space, which has similarly been naturally logged. Energy labels have been transformed from continuous variables into three different categories (red, orange and green label). The number of observations (N) in the applied models dropped from the original dataset of 70,000 observations to 44,160 observations. This can be explained since the sample contains a relatively high degree of homogeneous dwellings where distances, from an apartment within a block, towards closest facilities are highly similar of one another<sup>16</sup>.

<sup>&</sup>lt;sup>15</sup> Ordinary least squares

<sup>&</sup>lt;sup>16</sup> Stata automatically omits variables which contain collinearity from the regression

Table 3 also shows the accessibility variables. Distance to the closest highway ramp, train station and CBD, as well as other non-retail facilities could be found for each observation. On average, dwellings are the allocated farthest from attraction parks, which intuitively makes sense given the number of these parks. Children day-care and out-of-school care are the most proximate on average.

Controlling for submarkets within the Dutch residential sector, dummies will be added per four digit postal code, per year, (relative) location and building age. Relevant variables are conveyed in table.

| Variable                           | Description                                             | Obs.           | Mean       | Std.Dev. | Min              | Max          |
|------------------------------------|---------------------------------------------------------|----------------|------------|----------|------------------|--------------|
| Structu                            | ral Characteristics                                     |                |            |          |                  |              |
| RENTPM                             | Rent paid per month (excl. utilities)                   | 44,160         | 929.519    | 343.2285 | 622              | 3994         |
| InRENT_PM                          | Natural log of Rent per month                           | 44,160         | 6.782645   | .2489377 | 6.432            | 8.664        |
| FLOORSPACE                         | Net Leasable Area per dwelling (NEN2580)                | 44,160         | 110.2744   | 23.04564 | 33.18            | 281.39       |
| InFLOORSPACE                       | Natural log of Leasable Area per dwelling               | 44,160         | 4.679018   | .2103772 | 3.501            | 5.639        |
| PARKING                            | Amount of parking places                                | 44,160         | .3425501   | .4757723 | 0                | 3            |
| External Characteristics           |                                                         |                |            |          |                  |              |
| QUANT COM                          | Amount of commercial dwelling per region                | 44,160         | 53910.09   | 67910.16 | 700              | 182800       |
| INCOME                             | Aggregated income per region                            | 44,160         | 9386.099   | 4307.851 | 210              | 27200        |
| POP DENS                           | Population density per region                           | 44,160         | 4783.956   | 2353.257 | 20               | 13280        |
| <br>Closest f                      | acility <sup>17</sup>                                   | · · ·          |            |          |                  |              |
| Pharmacy                           |                                                         | 44,160         | .8975374   | .5841532 | 0                | 7.4          |
| ,<br>Hospital                      |                                                         | 44.160         | 3.165241   | 2.267414 | 0                | 17.7         |
| Private Clinic                     |                                                         | 44.160         | 4.286793   | 3.404259 | 0                | 21.4         |
| CBD                                |                                                         | 44.160         | 1.713919   | 1.112272 | 0                | 10.9         |
| Bar                                |                                                         | 44.160         | 1.060545   | .829631  | 0                | 5.1          |
| Cafeteria                          |                                                         | 44,160         | .6484392   | .4841502 | 0                | 5.4          |
| Restaurant                         |                                                         | 44.160         | .6790596   | .5242633 | 0                | 3.8          |
| Hotel                              |                                                         | 44,160         | 2.020949   | 1.547517 | .1               | 11.4         |
| Children davcare                   |                                                         | 44 160         | 5910411    | 3499898  | 1                | 69           |
| Out-of-school care                 |                                                         | 44,160         | 5831344    | 3377985  | 1                | 4 5          |
| Primary school                     |                                                         | 44,160         | .6280548   | .3318574 | .1               | 4.3          |
| High School                        |                                                         | 44 160         | 1 546406   | 1 070475 | 2                | 12.6         |
| Highway ramp                       |                                                         | 44 160         | 1 89375    | 9074283  | 1                | 5 5          |
| Train station                      |                                                         | 44 160         | 3 148542   | 3 070054 | 2                | 38.2         |
| Swimming nool                      |                                                         | 44 160         | 2 65616    | 1 63269  | 3                | 17.6         |
| Library                            |                                                         | 44 160         | 1 557221   | 9893665  | .5               | 6.6          |
| Cinema                             |                                                         | 44 160         | 4 498128   | 3 56932  | 2                | 26.4         |
| Sauna                              |                                                         | <i>11</i> ,100 | 5 961203   | 1 111555 | .2               | 20.4         |
| Amusement nark                     |                                                         | 44,100         | 5.068265   | 3 367707 | .+<br>3          | 29.4<br>20.0 |
| Theatre                            |                                                         | 44,100         | 3 307561   | 2 87503  | .5               | 23.5         |
| Accessibi                          | ility Variables                                         | 44,100         | 3.307301   | 2.87303  | .2               | 24.7         |
| Retail category                    | Framples                                                | Obs            | Δνσ        | GIA (m2) | Δνσ Dist         | (m)          |
| Ai Supermarket                     | Alberth Heijn Jumbo                                     | 44 160         | 100 6      | 5        | 705.2            | <u>(</u> ,   |
| Ai_Supermarket                     | H&M Zara                                                | 44 160         | 64.6       | ,        | 953.4            |              |
| Ai Flora & Fauna                   | Intratuin                                               | 44 160         | 122 8      | 2        | 994 2            |              |
| Ai_nora & radina<br>Ai_Drug stores | Kruidvat Etos                                           | 44 160         | 55.6       | ,        | 1000.2           |              |
| Ai Car & Bike                      | Halfords                                                | <i>11</i> ,100 | 67 A       |          | 11/2 2           |              |
| Ai_Cai & Dike                      | Cell-phone computer                                     | 44,100         | 67.4       |          | 1757 /           |              |
| Ai_Liectionics                     |                                                         | 44,100         | 26.8       |          | 1254,4           |              |
| Ai_Juweny & Opticians              | Plakker Vanas                                           | 44,100         | 20,8       | -        | 1236,8           |              |
| Ai_nousenoid supply                | Borny Sport                                             | 44,100         | 100,0      | 2        | 1266.9           |              |
|                                    | Camma Bravis                                            | 44,100         | 121,0      | )<br>)   | 1204.9           |              |
| AI_DIT<br>Ai_Shoos & loothor       | Van Haaron                                              | 44,100         | 273,0      | )        | 1354,0           |              |
| AI_SHOES & leather                 | Vall Fladell                                            | 44,100         | 71,4       |          | 1455,2           |              |
| Ai Hobby                           | Diulia, Ille Redu Sliup<br>Dhatachan, partshans         | 44,100         | 5U<br>40 9 |          | 1644             |              |
| Ai_Nrt & antique                   | Calorios antique                                        | 44,100         | 40,8       |          | 1044,ð<br>2414 c |              |
| Ai Dopartment store                | Jaieries, alluque                                       | 44,100         | 44,4       | -        | 2414,0<br>2000 0 |              |
| Ai_Department store                | nema, V&D, Bijelikuri<br>Variaus giftshans, Laan bakkar | 44,160         | 091,t      | 0        | 2000,0<br>1715 1 |              |
| AI_LITESTYIE                       | vanous gittshops, Leen bakker                           | 44,160         | 1056       | ,ō       | 4715,4           |              |

## Table 3: Descriptive statistics

 $<sup>^{\</sup>rm 17}$  Closest facility average for all households based on four digit postal code.

| Dummies    |     | Description                   |                                                  | Perc. % |
|------------|-----|-------------------------------|--------------------------------------------------|---------|
| BUILT_CAT  | 1 = | Before 1970                   |                                                  | 6.89    |
|            | 2 = | 1970-1979                     |                                                  | 17.93   |
|            | 3=  | 1980-1989                     |                                                  | 25.42   |
|            | 4=  | 1990-1999                     |                                                  | 33.59   |
|            | 5=  | 2000-2009                     |                                                  | 13.53   |
|            | 6=  | After 2009                    |                                                  | 2.64    |
| DWELLING_T | 1 = | Deck-access flat;             | Flat with external corridor                      | 14.21   |
|            | 2=  | Apartment block:              | Flat with internal corridor                      | 20.78   |
|            | 3=  | Maisonette;                   | Apartment with two floor levels; internal stairs | 2.22    |
|            | 4=  | Other attached buildings      | Various attached single-family dwellings[2]      | 12.81   |
|            | 5=  | Terraced housing              | Rows of identical houses which share side walls. | 38.91   |
|            | 6=  | Semidetached housing          | Pair of houses, which share one wall             | 5.90    |
|            | 7=  | Miscellaneous                 | Various dwellings                                | 5.18    |
| LOCATION   | 1=  | Outside of a center           |                                                  | 48.51   |
|            | 2=  | Center of village             |                                                  | 14.71   |
|            | 3=  | Center of a town (=larger tha | n village)                                       | 13.00   |
|            | 4=  | Green area within city (=betw | veen rural and urban area)                       | 20.31   |
|            | 5=  | Rurally situated              |                                                  | 3.46    |
| FAM        | 1=  | Not a multifamily home        |                                                  | 49.59   |
|            | 2=  | Multi family home             |                                                  | 50.41   |
| YEAR       | 1=  | 2008 (Start of rent contract) |                                                  | 13.75   |
|            | 2=  | 2009                          |                                                  | 11.87   |
|            | 3=  | 2010                          |                                                  | 13.42   |
|            | 4=  | 2011                          |                                                  | 12.92   |
|            | 5=  | 2012                          |                                                  | 12.06   |
|            | 6=  | 2013                          |                                                  | 14.23   |
|            | 7=  | 2014                          |                                                  | 17.64   |
|            | 8=  | 2015 (Q1)                     |                                                  | 4.11    |
| ENERGY     | 1=  | No Label                      |                                                  | 49.45   |
|            | 2=  | Red Label (F,G)               |                                                  | 31.72   |
|            | 3=  | Orange Label (D, E)           |                                                  | 8.09    |
|            | 4=  | Green Label (A,B and C)       |                                                  | 10.73   |

## 3.4 Empirical model

Given the spatial character of this thesis, the relation between housing rent and accessibility will be performed along equation (5).

$$LnR_{i} = b_{o} + \sum_{j} \varphi_{j}S_{ij} + \sum_{k} \gamma_{k}E_{ik} + \sum_{l} \theta_{l}A_{il} + \varepsilon_{i}$$
<sup>(5)</sup>

In above-mentioned equation, rent has been naturally transformed. The matrix  $LnR_i$  consists of the commercial residential rent of dwelling *i*, also known as the dependent variable.  $b_0$  is the constant, summation *S* denotes structural characteristics of dwelling *i*, summation *E* yields external characteristics of dwelling *i*, and  $A_{ij}$  is a summation of accessibility between dwellings *i* and retail facilities *j*. These vectors are identified as independent variables, where epsilon  $\varepsilon_i$  denotes the error term. Three models will be estimated. Due to the intrinsic character of the housing market and its strong autocorrelation between submarkets, clustered error regression has been performed for all models. The first model, or base-line model, is regressed using control variables, the constant and clustered standard error terms.

The second and third model which will be produced should be the best performing models, where the accessibility variable will be included using two scenarios. All models will control for spatial heterogeneity using four digit postal area dummies with cluster regression. This assumes that each observation within four-digit postal area code are comparable and have local effects. Dummies will be generated per four-digit postal code to include the influence of surrounding property rents. This approach lowers the amount of variation across the sample as whole, and rises the power of explanation within the model. This should result in a parsimonious model, with a relatively high R<sup>2</sup>. Using these different models, with slightly different arrangements, should provide evidence for the relationship between housing rents and accessibility more clearly. In addition, it should provide which facility types are (more) influential on housing rents then others.

# 4. Empirical results analysis

This section provides the results of the OLS regression. The first model which has been estimated is known as the baseline model. It controls for structural characteristics (not shown in table 4, see appendix VII for complete results), neighbourhood variables, energy-labels and distances towards various non retail facilities. The baseline model is extended with the key-interest of this research, i.e. retail accessibility. This has been researched using two scenarios by applying two different distance decay parameters. The results are mostly significant and generally show intuitively plausible outcomes. The final model shows a R<sup>2</sup> of nearly 0.82.

## Table 4. Results<sup>18</sup>

| InRENT_PM                    | Model 1         |             | Model 2       |           | Model 3    |           |
|------------------------------|-----------------|-------------|---------------|-----------|------------|-----------|
|                              |                 | Clustered   |               | Clustered |            | Clustered |
|                              | b               | Std. Err.   | b             | Std. Err. | b          | Std. Err. |
| Constant                     | 3,6426***       | 0,1554      | 5,1146***     | 0,4227    | 5,0113***  | 0,3657    |
| InFloorspace                 | 0,6290***       | 0,0294      | 0,6290***     | 0,0294    | 0,6290***  | 0,0294    |
| Red_EnrgyLabel               | -0,0386**       | 0,0188      | -0,0386**     | 0,0188    | -0,0386**  | 0,0188    |
| Orange_EnrgyLabel            | -0,0208         | 0,0197      | -0,0209       | 0,0197    | -0,0209    | 0,0197    |
| Green_EnrgyLabel             | 0,0500***       | 0,0174      | 0,0500***     | 0,0174    | 0,0500***  | 0,0174    |
| Dis_CBD                      | -0,2456***      | 0,0353      | -0,3740***    | 0,0606    | -0,6117*** | 0,0984    |
| Dis_Pharmacy                 | 0,1671***       | 0,0119      | -0,7002***    | 0,2136    | -0,6024*** | 0,1092    |
| Dis_Hospital                 | 0,0136***       | 0,0031      | 0,0101        | 0,0102    | -0,0443*** | 0,0093    |
| Dis_Bar                      | 0,0804***       | 0,0201      | 0,2196***     | 0,0732    | 0,0956***  | 0,0190    |
| Dis_Restaurant               | 0,7123***       | 0,1114      | 0,7855***     | 0,1691    | 1,3423***  | 0,2196    |
| Dis_Hotel                    | 0,0058          | 0,0103      | 0,0895***     | 0,0322    | 0,0234**   | 0,0119    |
| Dis_Children_daycare         | -0,6694***      | 0,0573      | 1,1811***     | 0,4112    | 0,9810***  | 0,1870    |
| Dis_Out_of_school_care       | 0,4371***       | 0,0488      | 0,2644***     | 0,0488    | -0,1843*   | 0,1011    |
| Dis_Primary_school           | -1,0611***      | 0,1404      | -1,1257***    | 0,1921    | -1,2608*** | 0,1686    |
| Dis_High_School              | 0,0342***       | 0,0027      | -0,1911**     | 0,0928    | -0,0579*** | 0,0218    |
| Dis_Highway_ramp             | -0,0611***      | 0,0083      | 0,1741***     | 0,0466    | 0,0917***  | 0,0138    |
| Dis_Train_station            | -0,0044         | 0,0079      | -0,0049       | 0,0096    | -0,0266*** | 0,0030    |
| Dis_Swimming_pool            | 0,0019          | 0,0032      | -0,1458***    | 0,0468    | -0,1416*** | 0,0287    |
| Dis_Cinema                   | -0,0398***      | 0,0115      | -0,1136**     | 0,0525    | -0,3583*** | 0,0765    |
| Dis_Sauna                    | 0,0475***       | 0,0068      | 0,0919***     | 0,0240    | 0,1155***  | 0,0203    |
| Dis_Amusement park           | 0,0858***       | 0,0070      | 0,0092***     | 0,0026    | 0,0522***  | 0,0102    |
| Dis_Theatre                  | -0,0329***      | 0,0121      | 0,1760***     | 0,0611    | 0,5069***  | 0,1032    |
| InAi_fashion                 |                 |             | 0,5242***     | 0,1242    | 0,1068***  | 0,0193    |
| InAi_hobbies                 |                 |             | 0,1255***     | 0,4258    | 0,2980***  | 0,0754    |
| InAi_shoes_leather           |                 |             | 0,2042**      | 0,0809    | 0,1672***  | 0,0516    |
| InAi_optics_jewelry          |                 |             | -1,3403***    | 0,4913    | -0,7537*** | 0,1664    |
| lnAi_media                   |                 |             | 0,2957***     | 0,0627    | 0,7313***  | 0,1278    |
| InAi_sport_games             |                 |             | -0,5112***    | 0,1413    | -0,3741*** | 0,0642    |
| InAi_art_antique             |                 |             | 0,0728**      | 0,0318    | 0,0027     | 0,0082    |
| InAi_flora_fauna             |                 |             | -0,1146***    | 0,0429    | 0,0063     | 0,0125    |
| InAi_electronics             |                 |             | 0,4297***     | 0,1239    | 0,4798***  | 0,0849    |
| lnAi car bike                |                 |             | -0,3582**     | 0,1490    | -0,4911*** | 0,1176    |
| InAi diy                     |                 |             | 0,2339**      | 0,0959    | -0,2013*** | 0,0512    |
| InAi lifestyle               |                 |             | -0,0482***    | 0,0173    | -0,1132*** | 0,0249    |
| InAi departmentstore         |                 |             | 0,2513***     | 0,0599    | 0,0754***  | 0,0124    |
| InAi supermarket             |                 |             | 0,2545***     | 0,0976    | 0,1523***  | 0,0354    |
| InAi drugstores              |                 |             | 0.1713***     | 0.0236    | 0.0598**   | 0.0261    |
| N_                           | 44,160          |             | 44,160        | ,         | 44,160     | <u> </u>  |
| <u>R<sup>2</sup></u>         | 0.7901          |             | 0.8161        |           | 0.8161     |           |
| Structural controls          | Yes             |             | Yes           |           | Yes        |           |
| Time controls                | Yes             |             | Yes           |           | Yes        |           |
| Controlled for # of clusters | 629             |             | 629           |           | 629        |           |
| *Significant at 10%. *       | *Significant at | 5%. ***Sign | ificant at 1% |           |            |           |

<sup>&</sup>lt;sup>18</sup> See appendix VIII for full results.

Natural logarithms have been employed on the dependent variable, the accessibility variables and floor space. This implies that the model is log-linear and partly log-log. The interpretation of the coefficients thus should be interpreted as growth-rate and elasticity, respectively. The dummies included in the model describe year of the rent transaction, the type dwelling, in which time period it was built and the location characteristic. The reference category for rent transaction is set to 2015. The reference time period when the dwelling was built is set to 2009 and above. Seven types of dwellings are distinguished, i.e. deck-access flat, apartment block, maisonette, attached-buildings, terraced housing, semidetached and 'miscellaneous dwellings', where the latter is the reference. The results show quite a high power of explanation ( $R^2$ .79), which implies that the variation is explained well in the baseline model already. The models include nearly 44,160 observations with mostly significant results. A<sub>i</sub>, in equation (5), is described as a sum of vectors of all accessibility measures where coefficients are regressed per retail category. One accessibility category is omitted<sup>19</sup> due to collinearity. Collinearity also caused some four digit postal codes indicator variables to be omitted in the regression. This can be explained from *the first rule of geography*<sup>20</sup>, which causes the error terms of some adjacent postal codes to be correlated with one another. Note that distance to CBD shows some moderate correlation as can be seen in appendix X, but not a strong relationship.

The baseline model delivers results which are intuitively plausible. The more detailed model shows, as can be seen from appendix VIII, continuous upward rent revisions per year. Rents are, however, not deflated thus this seems logical. In general, newer dwellings yield more rent, a slight retro effect can be seen for older dwellings, and attached dwellings are cheaper than semi-detached or detached dwellings. Floor space is expressed as a natural logarithm in the regression and thus should be interpreted as an elasticity effect. This means that the addition of 1% of square meter floor space, results in a rise of rent of approximately 0,69%. This seems intuitively low, however, this coefficient is similar to the coefficients found in other accessibility studies (Ottensmann, 2008; Song & Sohn, 2008). These studies resulted in floor space regression coefficients of .02 and .003, respectively. Locational variables such as neighbourhood average income, population density and the supply of commercial rental dwellings (expressed per four-digit postal code) were initially analysed. However, these variables barely affected rent thus were excluded from the models. The influence of energy labels on rent have also been analysed. Three types of labels were distinguished; red, orange and green. Red and orange energy labels negatively affect rent and a green label yields more rent. The addition of energy labels asserts that if energy label rises from orange to green, i.e. from D to C label, rent rises with approximately 5%<sup>21</sup>, ceteris paribus. Energy-efficient dwellings yield more rent since, given that there is no bargaining, less had to be paid for utilities. It can be interpreted that energyefficiency of a dwelling is capitalized in the rent level already.

The baseline model also accounts for proximity towards non-retail facilities. Proximity effects are measured as kilometres originating from a dwelling towards the closest non-retail facility. The negative relationship between distance and the CBD, i.e. rent becomes higher the more proximate a dwelling is located, is intuitively correct and in line with existing literature (Bramley et al, 2009). Nonetheless, according to the model estimation this implies that if distance between a dwelling and the CBD rises with one kilometre, rent lowers with 24%, ceteris paribus. Although this result is significant in the model it seems intuitively high. Literature shows the influence distance towards the

<sup>&</sup>lt;sup>19</sup> Retail category 'Household supply' is omitted due to collinearity

<sup>&</sup>lt;sup>20</sup> "Everything is related to everything else, but near things are more related than distant things." (Tobler, 1970)

<sup>&</sup>lt;sup>21</sup> Mathematically correct:  $+1 \text{ m}^2$  increases the rent per month with ((exp <sup>b1</sup> -1) \* 100)

CBD of -0,002<sup>22</sup> (Heikkila et al., 1989) and -0.016 (Richardson et al., 1990) as the dwelling gets one mile further away from the CBD on residential value. When distance towards CBD is expressed per kilometre, the housing value on average drops a bit more, i.e. minus 5% per kilometre (Chen, & Hao, 2008). The regression results of primary schools and children day-care facilities which highly influence rent levels are also higher than predicted by literature. The influence of a schools vary across different schools and shows coefficients between -0.0004 and -0.27 (Clark & Herrin, 2000). Other significant outcomes which also result in rent premiums are children day-care facilities, primary schools, cinema's, theatres, highway ramps and train stations. Aforementioned variables are control variables and determine the baseline model, i.e. Model 1. Since key the focus of this study is on retail accessibility, a separate paragraph has been dedicated to discuss the results.

## 4.2 Retail accessibility

Models 2 and 3 suggest that accessibility parameters have an effect on rental values. Some accessible facilities influence in a positive manner and some accessible facilities exert negative influence. Both models use the same observations and explain the variation almost equally. Model 2 and 3 extend the baseline model where retail accessibility is calculated using the gravity equation (4) towards retail facilities. For estimating heterogeneous effects of accessibility, different distance decay measures are applied. Model 2 is estimated with weak distance decay, expressed as Beta=1. Model 3 is estimated with strong distance decay, expressed as Beta=2. Recall that the higher the beta, the stronger the effect of distance decay, the higher the unwillingness to travel towards a certain facility. Thus, regression results with a Beta of 2, state that the positive effect of accessibility towards facilities rapidly diminish with distance. When inspecting the results some results appear doubtful, and should be interpreted with caution given the potential of non-BLUE-estimators, see appendix V for full report. In short, the assumption of spatial autocorrelation is violated, which notes that the covariance between different regions is zero. This assumption, however, is less relevant within the real estate literature where houses are proven to exhibit spatial autocorrelation (Basu & Thibodeau, 1998). Thus, spatial autocorrelation is expected. The reason could be in the omission of variables or trends within the data (Brooks & Tsolacos, 2010). The latter seems plausible given the presence of homogeneous dwellings, i.e. similarities for dwellings within apartment blocks, flats and terraced housing neighbourhoods, where rents are often interpolated, similar and/or smoothed. A technique which has been applied to mitigate autocorrelation is to perform regression with clustered error regression on postal codes. Accessibility effects differentiate per retail category (fifteen categories in total) and do not only account for proximity, but also for household competition and attractiveness. The causal relationship between rent and the accessibility index cannot be expressed the same way as with aforementioned variables (non-retail facilities). Competition among households, proximity and distance should be interpreted as substitutes of each another, which all together influence rent. The accessibility variables are naturally transformed, thus they should be interpreted in terms of elasticity. A negative coefficient regarding a parameter implies, in contrast to proximity measures, that accessibility towards a certain retail facility results in a rent discount.

According to model 2 the highest negative influence on residential rent are optics and jewellery facilities. It should be noted that this could be influenced by their accessibility in terms of floor space. As can be seen from the descriptive table (3), optic and jewellery facilities are, on average, quite small. According to the gravity model, this translates in severely low accessibility and another

<sup>&</sup>lt;sup>22</sup> CBD, however, did not have a statistically significant influence.

aspect that influences this highly negative rent affect is the relatively high average distance and the low willingness to travel in model 2. Other retail facilities which lower rent are accessible sport & game facilities. A common aspect of both of these facilities is that the frequency of visits is relatively low, and do not cover primary needs. This brings us towards the facilities which we frequent the most, i.e. supermarkets. Accessibility towards supermarkets is valued positively. Only the influence of accessible fashion and electronic stores transcends this. If accessibility towards fashion stores rises with 1%, the expectation is that rent to rise by 0,52%.

Model 3, where beta is higher than in the first model, shows a smaller bandwidth between the highest and lowest values. Although model 3 implies that willingness to travel is low and effects rapidly diminish with distance, an increase of 61% of rent per kilometre away from the CBD seems exaggerated. This is however not surprising since the penalty to travel is high in model 3, i.e. Beta=2. Model 3 must be interpreted as a robustness case, which shows sensitivity when the assumption of distance changes. The most positive influence on rent are now media facilities (bookstores) and hobby stores. From further inspection in the data, the cause might be that that these type of facilities consist of a limited amount of generic, nationally known brand, stores and this category mainly consists of privately owned stores. From spatial analysis it could be seen that these type of stores are mainly situated at the edge of the central business district. Possibly resulting in less congestion effects, while benefitting from abundant amenities nearby. Accessible department stores, supermarkets, at & antique, shoes & leather and fashion facilities also yield higher rent.

In order to analyse the Dutch household rent preference, the alteration between the two models is investigated. Proximity effects in model 2 are, in general, endorsed in model 3. When comparing the two models the rent preference of a household becomes more clear. Model 2 shows the need of accessible facilities when willingness to travel is high. Model 3 describes the effects when willingness to travel is low and shows the proximity preference towards different facilities. When willingness to travel becomes lower, due to higher distance decay (Beta), the location of a dwelling becomes more important. Distance in this model has become more important relative to floor space and household competition. As a result, analysis show facilities which experience negative rent effects because they are too proximate to a certain facility. The proximity variable 'distance to restaurants' already exhibits a negative rent effect in model 2, and this effect becomes stronger in model 3. This effect is also visible for theatres and cinema's. Rent premiums can be found for dwellings which are proximate towards CBD, pharmacy, highway ramps, train stations and cinema's and especially primary schools. Apparently, Dutch households are willing to pay extra rent for being proximate to these types of facilities. When analysing the alteration between the models for retail accessibility effects, it can be seen that some retail functions result in rent premiums when they are accessible with weaker distance decay, and result in discounts if distance decay becomes stronger. This implies that when consumers are willing to travel less, their perspective on accessible amenities change. Accessible retail facilities which are related towards primary needs, i.e. supermarkets and drugstores positively influence rent, but when willingness to travel is low, they yield less rent. The most remarkable change when willingness to travel becomes more important is the appreciation of accessible hobby and media facilities. DIY stores result in rent premiums when they are accessible but not if they are situated too proximate. Rent decreases the more accessible DIY stores become. The opposite holds for flora & fauna facilities, which exert positive rent influence if they are accessible and proximate (although this

variable is not significant in model 3). Overall, it could be stated that accessibility towards retail facilities influence commercial residential rent, as can be seen from both models<sup>23</sup>

## 5. Conclusion

This study attempted to explain commercial residential rent based on a proximity and accessibility retail amenities. As a result of this study we conclude that accessibility has an influence on housing rent. This is consistent with earlier findings in the literature. In addition, evidence has been found which facilities positively affect rent and which facilities negatively affect rent within the Netherlands. In addition, we used commercial residential rent as the dependent variable. This unique combination is extended with two scenarios which distinguish two types of consumer travel using a gravity model. This information is especially interesting for real estate investors which try to optimally allocate commercial residential rent dwellings based on existing facilities. The most interesting results of this thesis are as follows:

A dwelling yields more rent if it has access to fashion facilities, electronic stores supermarkets, media, department stores. Some facilities can result in rent premiums if they are accessible, but result in discounts if they are situated too proximate. This can be concluded for DIY stores. This type of retail facility negatively influences rent if a dwelling is located proximately. Although outcomes seem clear, the applied approach within this thesis has some drawbacks.

#### 5.1 Discussion

The combination of a large sample and spatial analyses demonstrated powerful effects in the empirical model. Unfortunately, it cannot be stated that the final model is a parsimonious model given the amount of predicting independent variables. However, the power of explanation is desirable. Unfortunately, not all assumptions of the Gaus-Markov theorem could be fulfilled, this implies cautiousness concerning interpretation of results. A way of improving this matter, could be by defining beta empirically. Beta within this study has been derived from literature. The assumption that competition among households is defined by a 15-minute travel time radius was set because of the lack of computational power. This implies that certain facilities do not exert attraction beyond this radius, i.e. no-one travels furthers than 15 minutes for a certain facility, thus no one from Groningen shops in Amsterdam for example. A contribution would be to diminish the maximum travel radius and to empirically estimate beta based on modal split techniques. Another interesting topic for future research is to determine the role of privately owned retail facilities versus national retailers and housing values. The finding of the importance of these type of facilities on residential rent is new, and no results in current literature could be found of this outcome. Another interesting topic would be to determine the relation between privately owned retail facilities and city growth. This has been touched upon in the well cited article "consumer city" by Gleaser, Kolko and Saiz (2001) but outcomes are still unclear and research of this phenomenon could be interesting.

<sup>&</sup>lt;sup>23</sup> Since the sample is quite extensive, and data mining issues could be influential, a F-test is performed to check if all proximity and accessibility coefficients together are equal to zero. The outcome is that the null hypothesis, that all coefficients are equal to zero, has been rejected, see appendix IX.

## Literature

Adair, A., McGreal, S., Smyth, A., Cooper, J., & Ryley, T., 2000. House prices and accessibility: The testing of relationships within the Belfast urban area. *Housing studies*, 15(5), 699-716.

Ahlfeldt, G., 2011. If Alonso was right: modeling accessibility and explaining the residential land gradient. *Journal of Regional Science*, 51(2), 318-338.

Alonso, W., 1964. Location and land use: toward a general theory of land rent. *Harvard University Press.* 

American Planning Association, 1998. The principles of smart development. *PAS Report* #479, APA, Chicago, IL.

Andersson, D., Shyr, O., & Fu, J., 2010. Does high-speed rail accessibility influence residential property prices? Hedonic estimates from southern Taiwan. *Journal of Transport Geography*, 18(1), 166-174.

Basu, S., & Thibodeau, T. G., 1998. Analysis of spatial autocorrelation in house prices. *The Journal of Real Estate Finance and Economics*, 17(1), 61-85.

Bramley, G., Dempsey, N., Power, S., Brown, C., & Watkins, D., 2009. Social sustainability and urban form: evidence from five British cities. *Environment and Planning* A, 41(9), 2125-2142.

Brueckner, J. K., Thisse, J. F., & Zenou, Y., 1999. Why is central Paris rich and downtown Detroit poor?: An amenity-based theory. *European Economic Review*, 43(1), 91-107.

Chen, J., & Hao, Q., 2008. The impacts of distance to CBD on housing prices in Shanghai: a hedonic analysis. *Journal of Chinese Economic and Business Studies*, 6(3), 291-302.

Cheshire, P., & Sheppard, S., 1995. On the price of land and the value of amenities. *Economica, Volume* 247-267.

Clark, D. E., & Herrin, W. E. (2000). The impact of public school attributes on home sale prices in California. *Growth and change*, 31(3), 385-407.

Dalvi, M. Q., & Martin, K. M., 1976. The measurement of accessibility: some preliminary results. *Transportation*, 5(1), 17-42.

Debrezion, G., Pels, E. A., & Rietveld, P., 2006. The impact of rail transport on real estate prices: an empirical analysis of the Dutch housing market. *Tinbergen Institute Discussion Paper*.

Des Rosiers, F., Lagana, A., Thériault, M., & Beaudoin, M., 1996. Shopping centers and house values: an empirical investigation. *Journal of Property Valuation and Investment*, 14(4), 41-62.

Dorantes, L., Paez, A., & Vassallo, J., 2011. Analysis of house prices to assess economic impacts of new public transport infrastructure: Madrid Metro Line 12. Transportation Research Record: *Journal of the Transportation Research Board*, (No. 2245), 131-139.

Duin, C., & Stoeldraijer, L., 2014. Bevolkingsprognose 2014–2060: groei door migratie. *Centraal Bureau voor de Statistiek.* 

Evans, A.W., 1995. The property market: ninety per cent efficient? Urban Studies, 32(1), 5–29.

Franklin, J., & Waddell, P. 2003. A hedonic regression of home prices in King County, Washington, using activity-specific accessibility measures. *In Proceedings of the Transportation Research Board 82nd Annual Meeting*, Washington, DC.

Geofabrik, 2015. OpenStreetMap data for the Netherlands [online] Available at: <u>http://download.geofabrik.de/europe/netherlands.html</u> [accessed October 20, 20152015]

Geurs, K. T., & Van Wee, B., 2004. Accessibility evaluation of land-use and transport strategies: review and research directions. *Journal of Transport geography*, 12(2), 127-140.

Glaeser, E. L., Kolko, J., & Saiz, A., 2001. Consumer city. *Journal of Economic Geography*, 1(1), 27-50.

Government, 2015. Information on rented housing, 2015. *Governement.nl*. [online] Available at: <u>https://www.government.nl/topics/housing/contents/rented-housing</u> Accessed 21 Jul. 2015].

Hansen, W. G. 1959. How accessibility shapes land use. *Journal of the American Institute of Planners* 25(2), 73-76.

Harrison, D., & Rubinfeld, D. L., 1978. Hedonic housing prices and the demand for clean air. *Journal of environmental economics and management*, 5(1), 81-102.

Heikkila, E., Gordon, P., Kim, J. I., Peiser, R. B., Richardson, H. W., & Dale-Johnson, D., 1989. What happened to the CBD-distance gradient?: land values in a policentric city. *Environment and Planning* A, 21(2), 221-232.

Hewitt, C. M., & Hewitt, W. E., 2012. The effect of proximity to urban rail on housing prices in Ottawa. *Journal of Public Transportation*, 15(4), 43-65.

Hoesli, M., Thion, B., & Watkins, C., 1997. A hedonic investigation of the rental value of apartments in central Bordeaux. *Journal of Property Research*, 14(1), 15-26.

IVBN , 2015. 1st ed. [Beleggersgeld zoekt geschikte locaties voor vrije sector huur] Vereniging Institutionele Beleggers Nederland, 2-4. Available at: <u>http://www.ivbn.nl/viewer/file.aspx?FileInfoID=867</u> [Accessed 31 Aug. 2015].

Jang, M., & Kang, C. D., 2015. Retail accessibility and proximity effects on housing prices in Seoul, Korea: A retail type and housing submarket approach. *Habitat International*, 49, 516-528.

Joseph, A.E., Bantock, P.R., 1982. Measuring potential physical accessibility to general practitioners in rural areas: a method and case study. *Social Science and Medicine* 16, 85–90.

Kain, J. F., & Quigley, J. M. 1970. Measuring the value of housing quality. *Journal of the American Statistical Association*, 65(330), 532-548.

Kauko, T., 2003. Residential property value and locational externalities: On the complementarity and substitutability of approaches. *Journal of Property Investment & Finance*, 21(3), 250-270.

Kholdy, S., Muhtaseb, M., & Yu, W., 2014. Effect of an Open-air, Mixed-use Shopping Center on the Price of Nearby Residential Properties. *Journal of Real Estate Practice and Education*, 17(1), 1-18.

lacono, M., Krizek, K. J., & El-Geneidy, A., 2010. Measuring non-motorized accessibility: issues, alternatives, and execution. *Journal of Transport Geography*, 18(1), 133-140.

Lou, W., Wang, F., 2003. Measures of spatial accessibility to health care in a GIS environment: synthesis and a case study in the Chicago region. *Environment and Planning*, B(30), 865–884.

Lloyd, R., & Clark, T. N., 2001. The city as an entertainment machine. *Critical perspectives on urban redevelopment*, 6(3), 357-78.

Luo, W., & Qi, Y., 2009. An enhanced two-step floating catchment area (E2SFCA) method for measuring spatial accessibility to primary care physicians. *Health & place*, 15(4), 1100-1107.

Malpezzi, S., 2003. Hedonic pricing models: a selective and applied review. *Section in Housing Economics and Public Policy*: Essays in Honor of Duncan Maclennan (2003).

Martínez, L., & Viegas, J., 2009. Effects of transportation accessibility on residential property values: Hedonic Price Model in the Lisbon, Portugal, metropolitan area. *Transportation Research Record: Journal of the Transportation Research Board*, (2115), 127-137.

Ministry of Interior and Kingdom Relations, 2014. Investing in the Dutch housing market. [online] Available at:

https://www.government.nl/binaries/government/documents/leaflets/2014/05/26/investing-in-thedutch-housing-market/investing-in-the-dutch-housing-market-1.pdf [Accessed Augustus 27 2015].

Muhammad, S., de Jong, T., & Ottens, H. F., 2008. Job accessibility under the influence of information and communication technologies, in the Netherlands. *Journal of Transport Geography*, 16(3), 203-216.

Muth, R. F., 1969. *Cities and housing*, the spatial pattern of urban residential land use. University of Chicago Press

Nakanishi, M., & Cooper, L. G., 1974. Parameter estimation for a multiplicative competitive interaction model: least squares approach. *Journal of Marketing Research*, August, 303-311.

Oates, W. E., 1969. The effects of property taxes and local public spending on property values: An empirical study of tax capitalization and the Tiebout hypothesis. *The Journal of Political Economy*, 77(6), 957-971.

Öner, Ö., 2013. RETAIL CITY: Does accessibility to shops explain place attractiveness? (No. 335). *Royal Institute of Technology*, CESIS-Center of Excellence for Science and Innovation Studies.

Ottensmann, J. R., Payton, S., & Man, J., 2008. Urban location and housing prices within a hedonic model. *Journal of Regional Analysis and Policy*, 38(1), 19-35.

Pace, Kelly. P., 1998. Spatiotemporal Autoregressive Models of Neighborhood Effects. *Journal of Real Estate Finance and Economics*, 17(1), 15-33.

Palmquist, R. B., 1984. Estimating the Demand for the Characteristics of Housing. *The Review of Economics and Statistics*, 394-404.

Reilly, W.J., 1929, Methods for the Study of Retail Relationships, Austin Bureau of Business Research, University of Texas.

Rosen, S., 1974. Hedonic prices and implicit markets: product differentiation in pure competition. *The Journal of Political Economy*, 82 (1), 34-55.

Santin, O., Itard, L., & Visscher, H., 2009. The effect of occupancy and building characteristics on energy use for space and water heating in Dutch residential stock. *Energy and Buildings*, 41(11), 1223-1232.

Sheppard, S., 1999. Hedonic analysis of housing markets. *Handbook of regional and Urban Economics*, vol. 3 (North Holland, Amsterdam) 1595–1635.

Sirmans, S., Sirmans, C., & Benjamin, J., 1989). Determining apartment rent: the value of amenities, services and external factors. *Journal of Real Estate Research*, 4(2), 33-43.

Small, K. & Steimetz, S., 2012. Spatial hedonics and the willingness to pay for residential amenities. *Journal of Regional Science*, 52(4), 635-647.

Song, Y., & Sohn, J., 2007. Valuing spatial accessibility to retailing: A case study of the single family housing market in Hillsboro, Oregon. *Journal of Retailing and Consumer Services*, 14(4), 279-288.

Srour, I., Kockelman, K., & Dunn, T., 2002. Accessibility indices: connection to residential land prices and location choices. *Transportation Research Record: Journal of the Transportation Research Board*, (1805), 25-34.

Tyrväinen, L., & Miettinen, A., 2000. Property prices and urban forest amenities. *Journal of Environmental Economics and Management*, 39, pp.205-223.

van Eck, J. R., & De Jong, T., 1999. Accessibility analysis and spatial competition effects in the context of GIS-supported service location planning. *Computers, Environment and Urban Systems*, 23(2), 75-89.

Van Ommeren, J. N., & Van der Vlist, A. J., 2016. Households' willingness to pay for public housing. *Journal of Urban Economics*.

von Thünen, J. H., 1842. Der isolirte Staat. *Beziehung auf Landwirthschaft und Nationalökonomie*, Part One (2nd edn), Rostock, Leopold (original spelling of the work has been retained).

Wang, F., & Minor, W. W., 2002. Where the jobs are: employment access and crime patterns in Cleveland. *Annals of the Association of American Geographers*, 92(3), 435-450.

Weibull, J.W., 1976. An axiomatic approach to the measurement of accessibility. *Regional Science and Urban Economics*. 6, 357–379.

Zondag, B., & Pieters, M., 2005. Influence of accessibility on residential location choice. Transportation Research Record: *Journal of the Transportation Research Board*, (1902), 63-70.

# Appendix

Appendix I. Overview of frequently applied determinants within accessibility studies

| Author(s)                                            | Title                                                                                        | Variables                                            |                                                                                                                                                                                                                                         |                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                          | Evaluation                                                                                                                                                                                                                                                                          |
|------------------------------------------------------|----------------------------------------------------------------------------------------------|------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Andersson, D.,<br>Shyr, O., & Fu,<br>J., 2010        | Does high-<br>speed rail<br>accessibility<br>influence<br>residential<br>property<br>prices? | <u>Dependent variable</u><br>Transaction price (log) | <u>Structural attributes</u><br>Age<br>Floor area in square meters<br>Lot size in square meters<br>Shop/dwelling use dummy<br>Street frontage dummy                                                                                     | <u>Neighborhood attributes</u><br>College educated in district<br>Commercial zone dummy<br>District mean income in NT\$<br>thousand (log<br>Residential zone dummy<br>Road width in meters (log) | Accessibility attributes<br>Distance in kilometers to CBD/old<br>railway station (log)<br>Distance in kilometers to HSR<br>station (log)<br>Distance in kilometers to nearest<br>freeway interchange (log)<br>Distance in kilometers to Tainan<br>Science-based Industrial Park<br>(log) | Three estimation<br>techniques were used<br>within the hedonic<br>price regression (OLS):<br>Log-linear, semi-<br>logarithmic and Box-<br>Cox-transformed<br>forms.<br>The best performing<br>model was box-cox<br>transformed with four<br>transformations.                        |
| Hewitt, C. M., &<br>Hewitt, 2002                     | The effect of<br>proximity to<br>urban rail on<br>housing prices<br>in Ottawa                | <u>Dependent variable</u><br>Transaction price (log) | <u>Structural attributes</u><br>Age<br>Area of property<br>Number of bathrooms<br>Number of bedrooms<br>Number of fireplaces<br>Number of garages<br>Parking<br>Style of house<br>Type of house<br>Walking distance to train<br>station | <u>Neighborhood attributes</u><br>Change in population<br>Income<br>Public transit users<br>Tax rate                                                                                             | <u>Accessibility attributes</u><br>Distance to nearest water feature<br>Distance to nearest park<br>Distance to point of interest                                                                                                                                                        | Several techniques<br>were used, beginning<br>with simple OLS as<br>baseline model, OLS<br>extended with spatial<br>lags and geographically<br>weighted multiple<br>regression (GWMR).<br>The spatial lag model<br>proved optimal for<br>examining effects<br>locally and globally. |
| Ottensmann, J.<br>R., Payton, S., &<br>Man, J., 2008 | Urban location<br>and housing<br>prices within a<br>hedonic model                            | <u>Dependent variable</u><br>Transaction price (log) | <u>Structural attributes</u><br>Age<br>Air-conditioning<br>Basement dummy<br>Floor space<br>Garage<br>Lot area<br>Number of bathrooms<br>Porch<br>Total number of rooms                                                                 | <u>Neighborhood attributes</u><br>Income median<br>Percentage black<br>Percentage vacant property<br>School district<br>Tax rate                                                                 | <u>Accessibility attributes</u><br>Distance to CBD (in meters and<br>time)<br>Distance to employment centers<br>(measured in time including<br>congestion)<br>Mean distance to employment<br>centers (measured in zip codes)                                                             | Monocentric baseline<br>model estimated with<br>hedonic pricing<br>technique.<br>Models that expressed<br>accessibility in time<br>performed better than<br>models using distance<br>in meters.                                                                                     |

| Dorantes, L.,<br>Paez, A., &<br>Vassallo, J.,<br>2011     | Analysis of<br>house prices to<br>assess<br>economic<br>impacts of new<br>public transport<br>infrastructure:<br>Madrid Metro<br>Line 12 | <i>Dependent variable</i><br>Transaction price                   | Structural attributes<br>Air-conditioning<br>Bathrooms in apartment<br>Building floor level<br>Floor space<br>Heating<br>House sale price<br>Lift pool court<br>Parking<br>Rooms in apartment 2<br>Terrace (square meters) | <u>Neighborhood attributes</u><br>Hospital<br>Income per cap. Per municipality<br>Park<br>Population<br>School<br>Shopping center<br>Street    | Accessibility attributes<br>Distance to bus stop<br>Distance to CBD<br>Distance to metro station<br>Distance to train station                                       | Box-Cox<br>transformation was<br>not needed for<br>hedonic OLS. The<br>linear OLS was best<br>model and performed<br>better than a spatial<br>lag model.                       |
|-----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Debrezion, G.,<br>Pels, E. A., &<br>Rietveld, P.,<br>2006 | The impact of<br>rail transport<br>on real estate<br>prices: an<br>empirical<br>analysis of the<br>Dutch housing<br>market.              | <u>Dependent variable</u><br>Transaction price                   | <u>Structural attributes</u><br>Age<br>Fireplace<br>Floor space<br>Garage<br>Garden<br>Gas heater<br>Monument<br>Number of bathrooms<br>Number of rooms                                                                    | <u>Neighborhood attributes</u><br>Population composition<br>Household income                                                                   | <u>Accessibility attributes</u><br>Distance to nearest railway<br>Distance to most frequently<br>chosen station<br>Distance to highway entry/exit                   | Hedonic price model<br>with log in P in the<br>Ducth context.<br>Controlled for highway<br>ramps.                                                                              |
| Öner, Ö., 2013                                            | Does<br>accessibility to<br>shops explain<br>place<br>attractiveness?                                                                    | <u>Dependent variable</u><br>Housing price                       | <u>Structural attributes</u><br>(none)                                                                                                                                                                                     | <u>Neighborhood attributes</u><br>Population density<br>Mean wages<br>Municipal tax<br>Unemployment share                                      | <u>Accessibility attributes</u><br>Retail access<br>Leisure service concentration                                                                                   | Straight line<br>measurements from<br>house to retail                                                                                                                          |
| Jang, M., &<br>Kang, C. D.,<br>2015.                      | Retail<br>accessibility<br>and proximity<br>effects on<br>housing prices<br>in Seoul, Korea                                              | <u>Dependent variable</u><br>Transaction prices<br>(condominium) | <u>Structural attributes</u><br>Floor (level)<br>House size                                                                                                                                                                | <u>Neighborhood attributes</u><br>Distance to parks<br>Distance to schools<br>Distance to bus-stops<br>Distance to roads<br>Distance to street | <u>Accessibility attributes</u><br>Retail accessibility towards<br>different types of retail<br>Retail proximity to different types<br>of retail<br>Distance to CBD | Only one type of<br>residential property<br>used (condominium)<br>Accessibility is<br>calculated as supply<br>divided by demand.<br>Supply is determined<br>by floor space and |

| Adair et al.    | House prices      | <u>Dependent variable</u> | <u>Structural attributes</u> | <u>Neighborhood attributes</u> | <u>Accessibility attributes</u> | Does not account for     |
|-----------------|-------------------|---------------------------|------------------------------|--------------------------------|---------------------------------|--------------------------|
| (2000)          | and               | Transaction price (log)   | Bedrooms                     | Catholic household             | Distance between sectors within | trips outside of Belfast |
|                 | accessibility:    |                           | Central heating              | Economically active population | the city itself.                | and accessibility is of  |
|                 | relationships     |                           | Floor space                  | Single percep households       |                                 | inthe significance       |
|                 | within the        |                           | Need of modernization        | Single person nousenoids       |                                 |                          |
|                 | Belfast urban     |                           | Reception room               |                                |                                 |                          |
|                 | area              |                           | Reception room               |                                |                                 |                          |
| Song, Y., &     | Valuing spatial   | Dependent variable        | Structural attributes        | Neighborhood attributes        | Accessibility attributes        | No measurement of        |
| Sohn, J. (2007) | accessibility to  | Sale price (log)          | Age                          | Percentage white inhabitants   | Distance to CBD                 | size effect of retail    |
|                 | retailing: A case |                           | Floor space                  | Midian income                  | Distance to beach               | store.                   |
|                 | study of the      |                           | Loft size                    | Population density             | Distance to port                |                          |
|                 | single family     |                           |                              |                                | Distance to park                |                          |
|                 | housing market    |                           |                              |                                | Distance to commercial store    |                          |
|                 | in Hillsboro,     |                           |                              |                                |                                 |                          |
|                 | Oregon.           |                           |                              |                                |                                 |                          |

## Appendix II. Liberalization limits per year

2007 More than  $\notin$  621,78 2008 More than  $\notin$  631,73 2009 More than  $\notin$  647,53 2010 More than  $\notin$  647,53 2011 More than  $\notin$  652,52 2012 More than  $\notin$  664,66 2013 More than  $\notin$  681,02 2014 More than  $\notin$  699,48 2015 More than  $\notin$  710,68

Source: www.governance.nl

#### Appendix III. Overview of retail categories

|                     | Mean   | St. dev. | Obs.   | Min.     | Max.     |
|---------------------|--------|----------|--------|----------|----------|
| Supermarket         | 705.2  | 100.6    | 44,160 | 9.048515 | 23.8834  |
| Fashion             | 953,4  | 64,6     | 44,160 | 8.385389 | 22.84758 |
| Flora & Fauna       | 994,2  | 122,8    | 44,160 | 8.324543 | 29.43583 |
| Drug stores         | 1000,2 | 55,6     | 44,160 | 8.183463 | 22.50803 |
| Car & Bike          | 1142,2 | 67,4     | 44,160 | 8.141352 | 22.26968 |
| Electronics         | 1254,4 | 67,4     | 44,160 | 7.882374 | 21.97356 |
| Juwelry & Opticians | 1258,8 | 26,8     | 44,160 | 7.306695 | 21.43226 |
| Domestic_luxury     | 1316,8 | 100,6    | 44,160 | 8.472715 | 22.51468 |
| Sports & Games      | 1366,8 | 121,8    | 44,160 | 8.439865 | 22.43624 |
| DIY                 | 1394,8 | 275,8    | 44,160 | 9.011209 | 22.86859 |
| Shoes & leather     | 1453,2 | 71,4     | 44,160 | 7.995897 | 21.97995 |
| Media               | 1644   | 50       | 44,160 | 7.602584 | 21.46841 |
| Hobby               | 1644,8 | 40,8     | 44,160 | 7.318881 | 21.13085 |
| Art & antique       | 2414,6 | 44,4     | 44,160 | 6.84794  | 25.33374 |
| Department store    | 2888,8 | 691,6    | 44,160 | 8.183463 | 22.55434 |
| Lifestyle           | 4715,4 | 1056,8   | 44,160 | 9.305589 | 23.68128 |





Appendix V. Testing for OLS assumptions:

Five assumption of classical linear regression have been tested to show if the error term, estimated with OLS, has the desirable properties, table 5 (Brooks & Tsolacos, 2010):

#### Table 5: OLS assumptions

|     | Scientific annotation                              | Testing for:            | Meaning                                             |
|-----|----------------------------------------------------|-------------------------|-----------------------------------------------------|
| (1) | E( <i>ut</i> ) = 0                                 | Linearity               | Average value of residuals is zero                  |
| (2) | $var(ut) = \sigma 2 < \infty$                      | Homoscedasticity        | Variance of residuals is constant                   |
| (3) | cov ( <i>ui, uj</i> ) = 0 for <i>i</i> _= <i>j</i> | Spatial autocorrelation | Covariance between errors cross-sectionally is zero |
| (4) | cov ( <i>ut, xt</i> ) = 0                          | Independence            | Regressors are not correlated with error term       |
| (5) | $ut \sim N(0, \sigma 2)$                           | Normality               | Normal distribution of residuals                    |

The first assumption is not violated since the constant is not suppressed, or is forced through the origin (Brooks & Tsolacos, 2010). The second assumption is tested with the Bruesh-Pagan test and Whitest test (appendix VI), these test reject the hypothesis of constant variance of the error term. Given the amount of independent variables, which potentially could be contaminated with mutual influential observations, the solution to this heteroscedasticity is found to perform regression with robust standard errors. The *third* assumption notes that the covariance between different regions is zero. However, this assumption does not according to the literature where houses are proven to exhibit spatial autocorrelation (Basu & Thibodeau, 1998). The reason could be in the omission of variables or trends within the data (Brooks & Tsolacos, 2010). The latter seems plausible given the presence of homogeneous dwellings, i.e. similarities for dwellings within apartment blocks, flats and terraced housing neighbourhoods, where rents are often interpolated, similar and/or smoothed. A way to mitigate autocorrelation is to perform regression wit clustered standard errors. The correlation matrix among independent variables can be found in appendix X. The fourth assumption of i.i.d.<sup>24</sup> is visualized with appendix VII, and looks slightly skewed. The normality assumption, although logarithms have been applied, shows a leptokurtic distribution (see appendix VII). As inference it should be noted that predictors do no fulfil all assumptions the Gaus-Markov theorem, and estimators may not be BLUE<sup>25</sup>.

<sup>&</sup>lt;sup>24</sup> Independent and identically distributed random variables

<sup>&</sup>lt;sup>25</sup> Best linear unbiased estimator





Breusch-Pagan / Cook-Weisberg test for heteroskedasticity

Ho: Constant variance

Variables: fitted values of InRENT\_PM

chi2(1) = 6479.38

Prob > chi2 = 0.0001

Autocorrelation



Appendix VII . Normality test (Leptokurtic density plot)

Appendix VIII Results

|                         | Model 1        |     |           | Model 2        |     |          | Model 3        |     |           |
|-------------------------|----------------|-----|-----------|----------------|-----|----------|----------------|-----|-----------|
|                         | N              |     | 44,160    | N              |     | 44,160   | N              |     | 44,160    |
|                         | R <sup>2</sup> |     | 0.7901    | R <sup>2</sup> |     | 0.8161   | R <sup>2</sup> |     | 0.8161    |
|                         |                |     |           |                |     |          |                |     |           |
| InRENT_PM               | Coef.          |     | Std. Err. | Coef.          |     | Std.Err. | Coef.          |     | Std. Err. |
| Constant                | 3,6426         | *** | 0,1554    | 5,1146         | *** | 0,4227   | 5,0113         | *** | 0,3657    |
| Infloorspace            | 0,6290         | *** | 0,0294    | 0,6290         | *** | 0,0294   | 0,6290         | *** | 0,0294    |
| parkingplaces           | -0,0010        |     | 0,0095    | -0,0010        |     | 0,0095   | -0,0010        |     | 0,0095    |
| pop_dens                | 0,0000         | *** | 0,0000    | 0,0000         | *** | 0,0000   | 0,0001         | *** | 0,0000    |
| Red_Label               | -0,0386        | **  | 0,0188    | -0,0386        | **  | 0,0188   | -0,0386        | **  | 0,0188    |
| Orange_Label            | -0,0208        |     | 0,0197    | -0,0209        |     | 0,0197   | -0,0209        |     | 0,0197    |
| Green_Label             | 0,0500         | *** | 0,0174    | 0,0500         | *** | 0,0174   | 0,0500         | *** | 0,0174    |
| 2008                    | -0,1039        | *** | 0,0080    | -0,1039        | *** | 0,0080   | -0,1039        | *** | 0,0080    |
| 2009                    | -0,0914        | *** | 0,0110    | -0,0913        | *** | 0,0110   | -0,0913        | *** | 0,0110    |
| 2010                    | -0,0749        | *** | 0,0104    | -0,0748        | *** | 0,0104   | -0,0748        | *** | 0,0104    |
| 2011                    | -0,0693        | *** | 0,0099    | -0,0691        | *** | 0,0099   | -0,0691        | *** | 0,0099    |
| 2012                    | -0,0489        | *** | 0,0081    | -0,0488        | *** | 0,0081   | -0,0488        | *** | 0,0081    |
| 2013                    | -0,0352        | *** | 0,0089    | -0,0351        | *** | 0,0089   | -0,0351        | *** | 0,0089    |
| 2014                    | -0,0219        | *** | 0,0076    | -0,0219        | *** | 0,0076   | -0,0219        | *** | 0,0076    |
| Before 1970             | -0,0359        |     | 0,0263    | -0,0359        |     | 0,0263   | -0,0359        |     | 0,0263    |
| 1970-1979               | -0,0604        |     | 0,0401    | -0,0605        |     | 0,0401   | -0,0605        |     | 0,0401    |
| 1980-1989               | 0,0197         |     | 0,0335    | 0,0197         |     | 0,0335   | 0,0197         |     | 0,0335    |
| 1990-1999               | 0,1914         | *** | 0,0504    | 0,1914         | *** | 0,0504   | 0,1914         | *** | 0,0504    |
| 2000-2009               | 0,1598         | *** | 0,0353    | 0,1598         | *** | 0,0353   | 0,1598         | *** | 0,0353    |
| Deck-access flat;       | -0,0314        |     | 0,0486    | -0,0314        |     | 0,0486   | -0,0314        |     | 0,0486    |
| Apartment block:        | -0,0346        |     | 0,0474    | -0,0346        |     | 0,0474   | -0,0346        |     | 0,0474    |
| Maisonnette;            | -0,0614        |     | 0,0525    | -0,0614        |     | 0,0525   | -0,0614        |     | 0,0525    |
| Attached-buildings      | -0,0179        |     | 0,0466    | -0,0180        |     | 0,0466   | -0,0180        |     | 0,0466    |
| Terraced housing        | 0,0154         |     | 0,0232    | 0,0154         |     | 0,0232   | 0,0154         |     | 0,0232    |
| Semidetached            | 0,0312         |     | 0,0243    | 0,0312         |     | 0,0243   | 0,0312         |     | 0,0243    |
| Not_MultiFamliy home    | -0,0925        | **  | 0,0467    | -0,0926        | **  | 0,0467   | -0,0926        | **  | 0,0467    |
| LOC_Outside of a center | 0,3958         | *** | 0,0968    | -0,5813        | *** | 0,1555   | -0,7795        | *** | 0,1556    |
| LOC_Center_village      | 0,2884         | *** | 0,0871    | 0,2589         |     | 0,1893   | -0,2854        | *** | 0,0815    |
| LOC_Center_town         | -1,1657        | *** | 0,1257    | -1,0848        | *** | 0,2799   | -1,9384        | *** | 0,3772    |
| LOC_GreenArea_city      | 0,1568         | *   | 0,0844    | -0,2808        | *** | 0,0729   | -0,5108        | *** | 0,1369    |
| Dis_CBD                 | -0,2456        | *** | 0,0353    | -0,3740        | *** | 0,0606   | -0,6117        | *** | 0,0984    |
| Dis_Pharmacy            | 0,1671         | *** | 0,0119    | -0,7002        | *** | 0,2136   | -0,6024        | *** | 0,1092    |
| Dis_Hospital            | 0,0136         | *** | 0,0031    | 0,0101         |     | 0,0102   | -0,0443        | *** | 0,0093    |
| Dis_Bar                 | 0,0804         | *** | 0,0201    | 0,2196         | *** | 0,0732   | 0,0956         | *** | 0,0190    |
| Dis_Restaurant          | 0,7123         | *** | 0,1114    | 0,7855         | *** | 0,1691   | 1,3423         | *** | 0,2196    |
| Dis_Hotel               | 0,0058         |     | 0,0103    | 0,0895         | *** | 0,0322   | 0,0234         | **  | 0,0119    |
| Dis_Children daycare    | -0,6694        | *** | 0,0573    | 1,1811         | *** | 0,4112   | 0,9810         | *** | 0,1870    |
| Dis_Out-of-school care  | 0,4371         | *** | 0,0488    | 0,2644         | *** | 0,0488   | -0,1843        | *   | 0,1011    |
| Dis_Primary school      | -1,0611        | *** | 0,1404    | -1,1257        | *** | 0,1921   | -1,2608        | *** | 0,1686    |
| Dis_High School         | 0,0342         | *** | 0,0027    | -0,1911        | **  | 0,0928   | <br>-0,0579    | *** | 0,0218    |
| Dis_Highway ramp        | -0,0611        | *** | 0,0083    | 0,1741         | *** | 0,0466   | 0,0917         | *** | 0,0138    |

| Dis_Train station    | -0,0044 |     | 0,0079 | -0,0049 |     | 0,0096 | -0,0266 | *** | 0,0030 |
|----------------------|---------|-----|--------|---------|-----|--------|---------|-----|--------|
| Dis_Swimming pool    | 0,0019  |     | 0,0032 | -0,1458 | *** | 0,0468 | -0,1416 | *** | 0,0287 |
| Dis_Cinema           | -0,0398 | *** | 0,0115 | -0,1136 | **  | 0,0525 | -0,3583 | *** | 0,0765 |
| Dis_Sauna            | 0,0475  | *** | 0,0068 | 0,0919  | *** | 0,0240 | 0,1155  | *** | 0,0203 |
| Dis_Amusement park   | 0,0858  | *** | 0,0070 | 0,0092  | *** | 0,0026 | 0,0522  | *** | 0,0102 |
| Dis_Theatre          | -0,0329 | *** | 0,0121 | 0,1760  | *** | 0,0611 | 0,5069  | *** | 0,1032 |
| InAi_fashion         |         |     |        | 0,5242  | *** | 0,1242 | 0,1068  | *** | 0,0193 |
| InAi_hobbies         |         |     |        | 0,1255  | *** | 0,4258 | 0,2980  | *** | 0,0754 |
| InAi_shoes_leather   |         |     |        | 0,2042  | **  | 0,0809 | 0,1672  | *** | 0,0516 |
| InAi_optics_jewelry  |         |     |        | -1,3403 | *** | 0,4913 | -0,7537 | *** | 0,1664 |
| InAi_media           |         |     |        | 0,2957  | *** | 0,0627 | 0,7313  | *** | 0,1278 |
| InAi_sport_games     |         |     |        | -0,5112 | *** | 0,1413 | -0,3741 | *** | 0,0642 |
| InAi_art_antique     |         |     |        | 0,0728  | **  | 0,0318 | 0,0027  |     | 0,0082 |
| InAi_flora_fauna     |         |     |        | -0,1146 | *** | 0,0429 | 0,0063  |     | 0,0125 |
| InAi_electronics     |         |     |        | 0,4297  | *** | 0,1239 | 0,4798  | *** | 0,0849 |
| InAi_car_bike        |         |     |        | -0,3582 | **  | 0,1490 | -0,4911 | *** | 0,1176 |
| InAi_diy             |         |     |        | 0,2339  | **  | 0,0959 | -0,2013 | *** | 0,0512 |
| InAi_lifestyle       |         |     |        | -0,0482 | *** | 0,0173 | -0,1132 | *** | 0,0249 |
| InAi_departmentstore |         |     |        | 0,2513  | *** | 0,0599 | 0,0754  | *** | 0,0124 |
| InAi_supermarket     |         |     |        | 0,2545  | *** | 0,0976 | 0,1523  | *** | 0,0354 |
| InAi_drugstores      |         |     |        | 0,1713  | *** | 0,0236 | 0,0598  | **  | 0,0261 |

#### Appendix IX. F-test

af\_apoth = 0; af\_ziek\_i = 0; af\_dagImd = 0; af\_cafe = 0:af\_cbd = 0;;af\_restau = 0;af\_hotel = 0;af\_kdv = 0;af\_bso = 0;af\_ondbas = 0;af\_ondvrt = 0;af\_oprith = 0;af\_treinst = 0;af\_zwemb = 0;af\_bios = 0;af\_sauna = 0;af\_attrac = 0;af\_podium ;lnai\_b2\_fashion = 0;lnb2\_ai\_hobbies = 0;lnb2\_ai\_shoes\_leather = 0;lnb2\_ai\_optics\_jewelry = 0;lnb2\_ai\_media = 0;lnb2\_ai\_sport\_games = 0;lnb2\_ai\_art\_antique = 0;lnb2\_ai\_flora\_fauna = 0;lnb2\_ai\_electronics = 0;lnb2\_ai\_car\_bike = 0;lnb2\_ai\_diy = 0;lnb2\_ai\_lifestyle = 0;lnai\_b2\_departmentstore = 0;lnai\_b2\_supermarket = 0;lnai\_b2\_drugstores = 0

F( 33, 17377) = 66.60 Prob > F = 0.0000

## Appendix X. Correlation matrix

|              | InRENT~M | lnai_b | Inb2~ies | Inb2_a~r | Inb2~Iry | lnb2_~ia | Inb2~mes | Inb2_~ue | Inb2_~na | Inb2_~cs | lnb2_~ke | Inb2_~iy | lnb2_~le | lnai_b | lnai_b | lnai_b |
|--------------|----------|--------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|--------|--------|--------|
| InRENT_PM    | 10.000   |        |          |          |          |          |          |          |          |          |          |          |          |        |        |        |
| lnai_b2_fa~n | -0.0693  | 10.000 |          |          |          |          |          |          |          |          |          |          |          |        |        |        |
| Inb2_ai_ho~s | -0.0328  | 0.6737 | 10.000   |          |          |          |          |          |          |          |          |          |          |        |        |        |
| Inb2_ai_sh~r | -0.0722  | 0.8009 | 0.7727   | 10.000   |          |          |          |          |          |          |          |          |          |        |        |        |
| lnb2_ai_op~y | -0.0453  | 0.8710 | 0.7750   | 0.8500   | 10.000   |          |          |          |          |          |          |          |          |        |        |        |
| lnb2_ai_me~a | 0.0203   | 0.7313 | 0.8491   | 0.7958   | 0.8298   | 10.000   |          |          |          |          |          |          |          |        |        |        |
| Inb2_ai_sp~s | -0.1460  | 0.7519 | 0.7379   | 0.8262   | 0.7866   | 0.7643   | 10.000   |          |          |          |          |          |          |        |        |        |
| lnb2_ai_ar~e | 0.1513   | 0.4451 | 0.6405   | 0.4394   | 0.4918   | 0.6025   | 0.3965   | 10.000   |          |          |          |          |          |        |        |        |
| lnb2_ai_fl~a | -0.0408  | 0.5804 | 0.6347   | 0.6718   | 0.6430   | 0.6431   | 0.6348   | 0.3481   | 10.000   |          |          |          |          |        |        |        |
| Inb2_ai_el~s | -0.0692  | 0.7538 | 0.7752   | 0.8183   | 0.8200   | 0.7861   | 0.7826   | 0.4677   | 0.6272   | 10.000   |          |          |          |        |        |        |
| lnb2_ai_ca~e | -0.0725  | 0.7160 | 0.7491   | 0.7479   | 0.7825   | 0.7519   | 0.7323   | 0.4542   | 0.6538   | 0.7419   | 10.000   |          |          |        |        |        |
| lnb2_ai_diy  | -0.1876  | 0.4969 | 0.5317   | 0.5354   | 0.5197   | 0.5218   | 0.5912   | 0.2162   | 0.5001   | 0.5497   | 0.5421   | 10.000   |          |        |        |        |
| lnb2_ai_li~e | -0.0056  | 0.7105 | 0.6628   | 0.7170   | 0.7457   | 0.6783   | 0.7097   | 0.2264   | 0.5678   | 0.7116   | 0.7382   | 0.5990   | 10.000   |        |        |        |
| lnai_b2_de~e | -0.0881  | 0.7031 | 0.5860   | 0.6675   | 0.7298   | 0.6499   | 0.6932   | 0.3548   | 0.5398   | 0.6717   | 0.6504   | 0.4916   | 0.6404   | 10.000 |        |        |
| lnai_b2_su~t | -0.0368  | 0.6635 | 0.5820   | 0.5920   | 0.6473   | 0.6144   | 0.6015   | 0.3869   | 0.5634   | 0.6339   | 0.6631   | 0.5120   | 0.5742   | 0.6118 | 10.000 |        |
| lnai_b2_dr~s | -0.0542  | 0.8693 | 0.7610   | 0.8435   | 0.8824   | 0.8027   | 0.7803   | 0.4722   | 0.6393   | 0.8060   | 0.7838   | 0.5793   | 0.7569   | 0.6896 | 0.7159 | 10.000 |

| · · · ·     | INHEIN  | a innioo e | parkin's p | op_den yea  | ari yearz  | yearo      | year4 yea    | aro yearo   | yearr     | yearo ag    | el agez      | ageo      | age4 age     | o ageo      | dwell()     | weltz dwe   | Cto dwellte  | awellto awe    | _to_dwel_tr | rami en     | nviron i en | wironz environa | 3 environ4 | environo ar_c | bd ar_apoth | ar_zie i ar_ca | re ar_resu a | r_notel ar_k | dv ar_bso  | ar_ond s al | ir_ond t ar_o | oprnar_tret | ar_zvemi ar_ | _bios_ar_sauna | ar_att c ar_pod n | n             |
|-------------|---------|------------|------------|-------------|------------|------------|--------------|-------------|-----------|-------------|--------------|-----------|--------------|-------------|-------------|-------------|--------------|----------------|-------------|-------------|-------------|-----------------|------------|---------------|-------------|----------------|--------------|--------------|------------|-------------|---------------|-------------|--------------|----------------|-------------------|---------------|
| InBEN       | NTEL    | 10.000     |            |             |            |            |              |             |           |             |              |           |              |             |             |             |              |                |             | -           |             |                 |            |               |             |                |              |              |            |             |               |             |              |                |                   |               |
| Infloorspal | 0.247   | 4 10.000   |            |             |            |            |              |             |           |             |              |           |              |             |             |             |              |                |             |             |             |                 |            |               |             |                |              |              |            |             |               |             |              |                |                   |               |
| narkingol I | -0.23   | 27 0.0113  | 10.000     |             |            |            |              |             |           |             |              |           |              |             |             |             |              |                |             |             |             |                 |            |               |             |                |              |              |            |             |               |             |              |                |                   |               |
| DOD :       | den l   | 0.2008     | -0.2010 -1 | 1 1665 1    | 0.000      |            |              |             |           |             |              |           |              |             |             |             |              |                |             |             |             |                 |            |               |             |                |              |              |            |             |               |             |              |                |                   |               |
| uear1       | 1       | -0.0792    | 0.0158 0   | 0181 0.0    | 004 10.0   | 00         |              |             |           |             |              |           |              |             |             |             |              |                |             |             |             |                 |            |               |             |                |              |              |            |             |               |             |              |                |                   |               |
| 119.942     | żi      | -0.0282    | 0.0236 0   | 0116 -01    | 0107 -0.13 | 10 000     |              |             |           |             |              |           |              |             |             |             |              |                |             |             |             |                 |            |               |             |                |              |              |            |             |               |             |              |                |                   |               |
| uear3       | 3 1     | 0.0386     | 0.0117 -   | 0.0197 0.0  | 011 -0.15  | 19 -0 1428 | 10.000       |             |           |             |              |           |              |             |             |             |              |                |             |             |             |                 |            |               |             |                |              |              |            |             |               |             |              |                |                   |               |
| upard       | 1 i     | -0.0200    | 0.0327 0   | 0028 0.0    | 049 -0.15  | 30 -0.1420 | -0.1569 1    | 0.000       |           |             |              |           |              |             |             |             |              |                |             |             |             |                 |            |               |             |                |              |              |            |             |               |             |              |                |                   |               |
| upar        | ś i     | -0.0237    | 0.0245 0   | 0316 -01    | 0249 -0.14 | 3 -0.1330  | -0.1470 -0.1 | 1461 10.00  | 10        |             |              |           |              |             |             |             |              |                |             |             |             |                 |            |               |             |                |              |              |            |             |               |             |              |                |                   |               |
| uparf       | s i     | 0.0212     | -0.0121 0  | 0268 0.0    | 142 -0.15  | 6 -0.1453  | -0.1606 -0.1 | 1597 -0 149 | 6 10.000  |             |              |           |              |             |             |             |              |                |             |             |             |                 |            |               |             |                |              |              |            |             |               |             |              |                |                   |               |
| uear7       | 7       | 0.0562     | -0.0664_0  | 0262 0.0    | 106 -0.18  | 4 -0.1692  | -0.1870 -0.1 | 1860 -0.174 | 2 -0 1903 | 10.000      |              |           |              |             |             |             |              |                |             |             |             |                 |            |               |             |                |              |              |            |             |               |             |              |                |                   |               |
| uear        | à i     | 0.0397     | -0.0312 -1 | 1687 0.0    | 016 -0.08  | 07 -0.0748 | -0.0827 -0.1 | 0822 -0.077 | 0 -0.0842 | -0.0980 1   | 0.000        |           |              |             |             |             |              |                |             |             |             |                 |            |               |             |                |              |              |            |             |               |             |              |                |                   |               |
| anel        |         | -0.1343    | 0.0652 -   | 0.0075 -01  | 0946 -0.00 | 33 0.0053  | -0.0020 -0.1 | 0049 -0.008 | 9 0.0046  | 0.0057 0.0  | 044 10.00    | n         |              |             |             |             |              |                |             |             |             |                 |            |               |             |                |              |              |            |             |               |             |              |                |                   |               |
| age2        | i i     | -0.2684    | 0.1207 0   | 0869 -0     | 1586 0.033 | 5 0.0243   | 0.0015 -0.1  | 0064 0.0041 | -0.0128   | -0.0308 -0  | 0118 -0.1304 | 4 10.000  |              |             |             |             |              |                |             |             |             |                 |            |               |             |                |              |              |            |             |               |             |              |                |                   |               |
| age3        | i i     | -0.1920    | -0.1159 -1 | 0.0479 0.1  | 295 0.012  | 6 0.0273   | 0.0022 0.0   | 023 0.0115  | -0.0103   | -0.0319 -0. | 0118 -0.1599 | 9 -0.2869 | 10.000       |             |             |             |              |                |             |             |             |                 |            |               |             |                |              |              |            |             |               |             |              |                |                   |               |
| age4        | i i     | 0.3467     | 0.0084 -   | 0.0894 0.0  | 986 0.080  | 0 0.0563   | 0.0426 0.0   | 100 -0.038  | 1 -0.0456 | -0.0750 -0. | 0289 -0.1853 | 3 -0.3325 | -0.4078 1    | 0.000       |             |             |              |                |             |             |             |                 |            |               |             |                |              |              |            |             |               |             |              |                |                   |               |
| age5        | i i     | 0.2072     | -0.0359 0  | 0560 -0.    | 0373 -0.15 | 34 -0.1424 | -0.0569 0.0  | 064 0.0400  | 0.0940    | 0.1500 0.0  | 541 -0.1068  | 8 -0.1916 | -0.2349 -0.3 | 723 10.00   | 0           |             |              |                |             |             |             |                 |            |               |             |                |              |              |            |             |               |             |              |                |                   |               |
| age6        | i i     | -0.0604    | -0.0282 0  | 0719 -0.    | 0259 -0.01 | 0 -0.0026  | -0.0095 -0.  | 0260 -0.002 | 0 -0.0158 | 0.0524 0.0  | 232 -0.043   | 9 -0.0788 | -0.0967 -0.  | 121 -0.064  | 5 10.000    |             |              |                |             |             |             |                 |            |               |             |                |              |              |            |             |               |             |              |                |                   |               |
| dwel        | તાં     | 0.0831     | -0.1910 -  | 0.0520 0.1  | 763 -0.01  | 76 -0.0071 | -0.0333 -0.  | 0086 -0.003 | 0 0.0016  | 0.0515 0.0  | 157 -0.059   | 5 -0.1653 | -0.0912 0.2  | 066 0.0641  | 0.0088      | 10.000      |              |                |             |             |             |                 |            |               |             |                |              |              |            |             |               |             |              |                |                   |               |
| dwel        | 12      | 0.0930     | -0.2029 -  | 0.1010 0.12 | 257 -0.05  | 50 -0.0131 | 0.0031 -0.0  | 0189 -0.035 | 7 0.0486  | 0.0413 0.0  | 344 -0.088   | 6 -0.1803 | 0.1322 0.0   | 67 -0.022   | 7 0.0141 ·  | 0.2113 10   | .000         |                |             |             |             |                 |            |               |             |                |              |              |            |             |               |             |              |                |                   |               |
| dwel        | 13      | -0.0211    | -0.0555 -  | 0.0219 0.0  | 022 -0.01  | 28 -0.0116 | -0.0124 0.0  | 052 0.0004  | 0.0040    | 0.0124 0.0  | 210 -0.035   | 5 -0.0260 | 0.0071 0.0   | 275 0.0039  | 0.0116      | 0.0538 -0.0 | 709 10.00    | 0              |             |             |             |                 |            |               |             |                |              |              |            |             |               |             |              |                |                   |               |
| dweL        | t4      | 0.2629     | -0.1704 -  | 0.1232 0.1  | 517 0.023  | 2 0.0133   | 0.0692 0.0   | 414 0.0065  | -0.0754   | -0.0557 -0. | 0227 -0.1014 | -0.1498   | 0.0263 0.1   | 91 0.0629   | -0.0283     | 0.1541 -0.2 | 033 -0.0517  | 10.000         |             |             |             |                 |            |               |             |                |              |              |            |             |               |             |              |                |                   |               |
| dweL        | .s i    | -0.2914    | 0.3389 0   | .0996 -0.3  | 2537 0.031 | 3 0.0209   | -0.0045 -0.0 | 0094 0.0203 | 3 -0.0133 | -0.0300 -0. | 0152 0.2560  | 0.4348    | -0.1466 -0.3 | 997 -0.1052 | 0.0345      | 0.3162 -0.4 | 170 -0.1061  | -0.3042 10     | .000        |             |             |                 |            |               |             |                |              |              |            |             |               |             |              |                |                   |               |
| dweL        | t6      | -0.0626    | 0.2159 0   | 1296 -0.1   | 1450 0.013 | 8 0.0155   | 0.0032 0.0   | 116 0.0086  | 6 -0.0077 | -0.0283 -0. | 0195 -0.064  | 8 -0.0377 | 0.2179 -0.0  | 0734 -0.069 | 9 -0.0400 - | 0.1039 -0.1 | 371 -0.034   | 9 -0.1000 -0.2 | 051 10.000  |             |             |                 |            |               |             |                |              |              |            |             |               |             |              |                |                   |               |
| dwel        | 17      | 0.0207     | -0.0148 0  | 1099 -0.    | 0239 0.017 | 3 -0.0413  | -0.0459 -0.0 | 0096 0.0068 | 0.0574    | 0.0169 -0.  | 0121 -0.059  | 6 -0.0790 | -0.0671 0.0  | 596 0.1559  | -0.0366     | 0.0916 -0.1 | 208 -0.030   | 7 -0.0881 -0.1 | 307 -0.0594 | 10.000      |             |                 |            |               |             |                |              |              |            |             |               |             |              |                |                   |               |
| fam1        | 1       | -0.3060    | 0.4343 0   | .2015 -0.3  | 3312 0.048 | 3 0.0126   | -0.0198 -0.0 | 0046 0.0296 | 0.0113    | -0.0516 -0. | 0280 0.1937  | 0.3739    | -0.0614 -0.3 | 970 -0.086  | 3 -0.0005 · | 0.3950 -0.5 | 209 -0.1326  | -0.3800 0.80   | 05 0.2631   | 0.1972      | 10.000      |                 |            |               |             |                |              |              |            |             |               |             |              |                |                   |               |
| fam2        |         | 0.3060     | -0.4343 -  | 0.2015 0.3  | 312 -0.04  | 83 -0.0126 | 0.0198 0.0   | 046 -0.029  | 6 -0.0113 | 0.0516 0.0  | 280 -0.1937  | 7 -0.3739 | 0.0614 0.2   | 970 0.0863  | 0.0005 (    | 1.3950 0.52 | 09 0.1326    | 0.3800 -0.8    | 005 -0.2631 | -0.1972 -   | 10.000 1    | 10.000          |            |               |             |                |              |              |            |             |               |             |              |                |                   |               |
| enviro      | on1     | 0.1289     | -0.1222 -  | 0.0829 0.2  | 361 -0.01  | 36 0.0039  | -0.0009 -0.  | 0027 -0.023 | 6 0.0233  | 0.0057 0.0  | 098 -0.048   | 4 -0.0271 | 0.0290 0.0   | 0.0215      | 0.0141 (    | 1.0380 0.02 | 263 0.0348   | 0.1102 -0.0    | 696 -0.1038 | -0.0296 -0  | 0.1328 0.1  | 1328 10.00      | 0          |               |             |                |              |              |            |             |               |             |              |                |                   |               |
| enviro      | on2     | -0.1865    | 0.1781 0   | .2053 -0.3  | 2273 -0.00 | 43 0.0024  | -0.0093 0.0  | 101 0.0052  | 2 0.0038  | 0.0019 -0.  | 0166 0.0519  | 0.2771    | -0.0388 -0.3 | 2097 -0.027 | 6 0.0172 ·  | 0.1331 -0.1 | 503 -0.027   | 5 -0.1318 0.28 | 26 0.1220   | -0.0521 0.3 | 3137 -0.    | .3137 -0.4023   | 3 10.000   |               |             |                |              |              |            |             |               |             |              |                |                   |               |
| enviro      | on3     | 0.0754     | -0.1169 -  | 0.0512 0.1  | 616 0.009  | 4 -0.0071  | 0.0092 -0.   | 0202 0.0182 | -0.0208   | -0.0014 0.0 | 236 -0.076   | 5 -0.0999 | 0.0049 0.12  | 94 -0.000   | 5 -0.0249 ( | 1.1564 0.12 | 15 0.0163    | 0.0868 -0.2    | 211 -0.0735 | -0.0459 -0  | 0.2692 0.2  | 2692 -0.3569    | 9 -0.1639  | 10.000        |             |                |              |              |            |             |               |             |              |                |                   |               |
| enviro      | on4     | -0.0449    | 0.0671 -   | 0.0870 -0.1 | 1389 0.004 | 4 0.0026   | -0.0070 0.0  | 118 0.0077  | 7 -0.0124 | 0.0022 -0.  | 0149 0.0908  | -0.1089   | 0.0293 0.0   | 198 -0.004  | ) -0.0052 · | 0.0446 0.01 | 59 -0.022    | 2 -0.0751 0.01 | 84 0.0439   | 0.0793 0.0  | 0726 -0.    | .0726 -0.5018   | -0.2303    | -0.2044 10.   | .000        |                |              |              |            |             |               |             |              |                |                   |               |
| enviro      | on5     | -0.0188    | 0.0453 0   | .1244 -0.1  | 1932 0.021 | -0.0098    | 0.0227 -0.   | 0032 0.0037 | 7 -0.0053 | -0.0244 -0. | 0031 -0.043  | 2 -0.0516 | -0.0876 0.1  | 96 0.0071   | -0.0175 ·   | 0.0257 -0.0 | 351 -0.022   | 4 -0.0299 -0.0 | 117 0.0849  | 0.0982 0.0  | 0731 -0.    | .0731 -0.1558   | -0.0715    | -0.0635 -0.0  | 892 10.000  |                |              |              |            |             |               |             |              |                |                   |               |
| af_ob       | bd      | -0.1457    | 0.1661 0   | .0555 -0.:  | 2974 -0.00 | 57 0.0155  | -0.0010 0.0  | 072 0.0199  | 0.0005    | -0.0216 -0. | 0176 0.0236  | 0.0421    | -0.0031 -0.  | 371 -0.023  | 3 0.0279 ·  | 0.1315 -0.0 | 1994 -0.0419 | -0.1431 0.23   | 21 0.1037   | 0.0082 0.3  | 2822 -0.    | .2822 -0.1152   | 0.0976     | -0.2843 0.218 | 39 0.1581   | 10.000         |              |              |            |             |               |             |              |                |                   |               |
| af_ap       | poth    | -0.1035    | 0.1903 0   | .0497 -0.3  | 2632 0.008 | 3 0.0151   | 0.0060 -0.   | 0065 0.0283 | 3 0.0002  | -0.0298 -0. | 0263 0.0268  | 0.0225    | -0.0271 -0.0 | 0223 -0.007 | 8 0.0581 ·  | 0.0933 -0.0 | 817 -0.033   | 7 -0.1050 0.14 | 36 0.1359   | 0.0010 0.3  | 2142 -0.    | .2142 -0.1888   | 0.1624     | -0.0777 0.09  | 69 0.1282   | 0.6001 10.0    | 000          |              |            |             |               |             |              |                |                   |               |
| af_zie      | ek_i    | -0.2182    | 0.1688 0   | .1721 -0.3  | 2506 0.012 | 6 0.0200   | -0.0091 -0.  | 0016 0.0120 | 0.0052    | -0.0221 -0. | 0209 0.0727  | 0.2010    | -0.0233 -0.  | 971 -0.1203 | -0.0022 ·   | 0.1563 -0.1 | 241 -0.003   | 3 -0.0999 0.24 | 72 0.1315   | -0.0604 0.3 | 2804 -0.    | .2804 -0.1726   | 0.4191     | -0.1046 -0.10 | 036 0.0744  | 0.2709 0.232   | 0 10.000     |              |            |             |               |             |              |                |                   |               |
| af_ca       | afe     | -0.1206    | 0.1904 0   | .0982 -0.   | 3125 -0.00 | 17 0.0193  | 0.0070 0.0   | 093 0.0113  | 0.0068    | -0.0343 -0. | 0197 0.0073  | 0.0123    | 0.0785 -0.0  | 0451 -0.049 | 3 -0.0199 · | 0.1817 -0.0 | 807 -0.050   | 2 -0.1147 0.17 | 53 0.2012   | 0.0293 0.3  | 2855 -0.    | .2855 -0.0911   | 0.0343     | -0.2729 0.213 | 30 0.2169   | 0.5567 0.431   | 0 0.2275     | 10.000       |            |             |               |             |              |                |                   |               |
| af_re       | stau    | -0.2317    | 0.2102 0   | .1115 -0.3  | 3216 0.004 | 1 0.0076   | -0.0001 0.0  | 100 0.0195  | -0.0029   | -0.0203 -0. | 0235 0.0941  | 0.0545    | -0.0247 -0.  | 0437 -0.033 | 3 -0.0137 · | 0.1579 -0.1 | 638 -0.055   | 4 -0.1752 0.27 | 81 0.2050   | 0.0140 0.3  | 3792 -0.    | .3792 -0.0973   | 3 0.0786   | -0.2884 0.22  | 29 0.1436   | 0.6922 0.530   | 5 0.2345 0   | .5763 10     | .000       |             |               |             |              |                |                   |               |
| af_ho       | otel    | -0.1453    | 0.1817 0   | .0921 -0.3  | 2930 -0.01 | 52 -0.0116 | -0.0179 0.0  | 123 0.0413  | 0.0187    | -0.0176 -0. | 0105 -0.002  | 4 0.0511  | -0.0665 0.0  | 002 0.0470  | -0.0406 ·   | 0.1253 -0.0 | 1904 -0.0130 | -0.1745 0.20   | 67 0.0881   | 0.0864 0.3  | 2841 -0.    | .2841 -0.1775   | 5 0.1058   | -0.2544 0.27  | 11 0.1357   | 0.3880 0.253   | 0 0.2171 (   | .4461 0.41   | 84 10.000  | )           |               |             |              |                |                   |               |
| af_kd       | dv I    | -0.2168    | 0.0913 0   | .1836 -0.:  | 2291 -0.00 | 48 0.0179  | -0.0134 -0.  | 0030 0.0221 | -0.0063   | -0.0088 -0. | 0004 0.0254  | 0.1573    | 0.0300 -0.1  | 185 -0.095  | 2 0.0422 ·  | 0.0879 -0.0 | 286 0.0020   | -0.1444 0.10   | 32 0.1751   | -0.0248 0.1 | 1848 -0.    | .1848 -0.1454   | 0.2410     | -0.0497 -0.0  | 140 0.0460  | 0.3747 0.387   | 3 0.2528 0   | .2035 0.30   | 31 0.1572  | 10.000      |               |             |              |                |                   |               |
| af_bs       | so      | -0.1337    | 0.0848 0   | .1293 -0.   | 2246 -0.01 | 32 0.0121  | -0.0045 -0.  | 0083 0.0109 | 0.0106    | -0.0053 -0. | 0011 -0.0151 | 1 0.0985  | -0.0275 -0.  | 678 0.0107  | 0.0328 ·    | 0.0701 -0.0 | 538 0.0579   | -0.0902 0.07   | 23 0.1468   | -0.0085 0.1 | 1387 -0.    | .1387 -0.1582   | 2 0.2242   | 0.0206 -0.0   | 415 0.0495  | 0.3801 0.466   | 6 0.2141 0   | .2182 0.31   | 53 0.0860  | 0.6377      | 10.000        |             |              |                |                   |               |
| af_or       | ndba    | -0.0317    | 0.0586 0   | .0075 -0.   | 1438 -0.01 | 6 0.0053   | -0.0031 -0.  | 0075 0.0157 | 0.0118    | -0.0009 -0. | 0067 0.0367  | 0.0268    | -0.0333 -0.  | 0303 0.0089 | 0.0378      | 0.0404 -0.0 | 060 0.0221   | -0.0482 0.03   | 76 0.1000   | -0.0594 0.1 | 0619 -0.    | .0619 -0.1238   | 0.1135     | 0.0422 0.00   | 56 0.0258   | 0.4722 0.521   | 3 0.2167 0   | .2791 0.33   | 24 0.1154  | 0.4959 0.   | 1.7290 10     | 0.000       |              |                |                   |               |
| af_or       | ndvrt   | -0.1458    | 0.1602 0   | .1192 -0.   | 2224 0.006 | 1 0.0189   | -0.0106 -0.  | 0023 0.0087 | 0.0034    | -0.0105 -0. | 0180 -0.043  | 6 0.1218  | 0.0805 -0.   | 0957 -0.073 | 0 -0.0152   | 0.1132 -0.0 | 662 0.0090   | -0.1306 0.18   | 31 0.1001   | -0.0203 0.1 | 2215 -0.    | .2215 -0.1580   | 0.2809     | -0.1752 0.02  | 04 0.1651   | 0.3863 0.361   | 3 0.3974 0   | .4465 0.30   | 87 0.3463  | 0.2881 0.   | .2293 0.2     | 219 10.000  | )            |                |                   |               |
| af_op       | prith   | 0.0428     | -0.0604 -  | 0.0775 0.2  | 865 0.011  | -0.0040    | -0.0005 -0.  | 0113 0.0042 | 2 0.0180  | -0.0119 -0. | 0083 -0.003  | 9 -0.0925 | 0.0548 0.0   | 425 -0.003  | -0.0351     | 1327 0.04   | 42 -0.044    | 7 -0.0310 -0.1 | 017 0.0029  | 0.0048 -0   | 0.1000 0.1  | 1000 0.1206     | -0.2278    | 0.0940 -0.0   | 166 -0.0120 | 0.0070 0.042   | 5 -0.0922 0  | .0337 0.03   | 56 -0.0170 | -0.0893 -0  | 0.0511 -0.0   | 0284 0.0162 | 10.000       |                |                   |               |
| af_tre      | einst   | -0.1526    | 0.0950 0   | .1373 -0.1  | 2332 0.008 | 3 -0.0063  | -0.0156 0.0  | 034 -0.004  | 1 -0.0061 | 0.0234 -0.  | 0107 0.0833  | 0.1718    | -0.0291 -0.1 | 103 -0.067  | 3 -0.0063 · | 0.0723 -0.0 | 756 -0.029   | 0.1217 0.16    | 41 0.1049   | -0.0209 0.3 | 2049 -0.    | .2049 -0.1319   | 0.3202     | -0.1570 -0.0  | 029 0.0191  | 0.1805 0.189   | 0 0.3323 0   | 1347 0.17    | 41 0.1929  | 0.2145 0.   | 1448 0.12     | 200 0.2703  | -0.0438 1    | 10.000         |                   |               |
| af_zw       | vemil   | 0.0032     | 0.1159 0   | .0888 -0.1  | 0914 0.012 | 5 0.0263   | 0.0147 -0.1  | 0.0153      | -0.0052   | -0.0337 -0. | 0201 -0.058  | 4 0.0657  | -0.0184 0.0  | org -0.056  | 1 -0.0487 · | 0.0943 0.00 | 136 -0.023   | -0.0625 0.05   | 75 0.1098   | 0.0019 0.1  | 1127 -0.    | .1127 -0.1575   | 0.1775     | -0.1219 0.117 | 3 0.0366    | 0.1/28 0.209   | 5 0.2044 (   | 2646 0.13    | 33 0.1675  | 0.1679 0.   | 0.1295 0.10   | 0.2627      | 0.0156 0.2   | 2004 10.000    | *** ****          |               |
| ał_bi       | ios I   | -0.1772    | 0.1443 0   | . 1438 -0.3 | 2538 -0.01 | 8 0.0070   | -0.0009 0.0  | 109 0.0084  | + -0.0014 | 0.0015 -0.  | 0155 0.0534  | 0.1568    | -0.0029 -0.1 | 293 -0.039  | s 0.0012 ·  | 0.1534 -0.1 | 184 -0.048   | 5 -0.1406 0.28 | 88 0.0935   | 0.0181 0.3  | 3173 -0.    | .3173 -0.2618   | 5 0.4747   | -0.2573 0.09  | 62 0.0249   | 0.3484 0.255   | 8 0.3492 0   | 2775 0.31    | 80 0.3866  | 0.2234 0.   | 0.10          | 0.3050      | -0.1648 0.4  | 1678 0.2682    | 10.000            |               |
| ał_sa       | auna I  | -0.2057    | 0.1667 0   | . 1805 -0.3 | 2995 0.003 | 8 -0.0067  | 0.0075 0.0   | 294 0.0230  | -0.0002   | -0.0371 -0. | 0246 0.0779  | 0.1090    | -0.1155 0.0  | JUB -0.024  | + -0.0232 - | 0.0838 -0.0 | 1350 -0.067  | 5 -0.1655 0.19 | 0 0.1/24    | -0.0105 0.3 | 2633 -0.    | .2693 -0.2240   | J U.2163   | -0.0445 0.04  | 33 0.1843   | 0.2621 0.224   | 1 0.1385 L   | 2531 0.30    | 165 U.2247 | 0.1831 0.   | 1.1835 U.T.   | 588 U.1373  | -0.0860 0.2  | 289 0.1272     | 0.0001 10.000     | 40.000        |
| al_at       | ttrac   | -0.1938    | 0.0861 0   | 2166 -0.3   | 2020 -0.00 | 03 0.0048  | -0.0021 0.0  | 051 0.0130  | -0.0108   | -0.0052 -0. | 0054 0.0334  | 0.0907    | 0.0154 -0.1  | 180 0.0015  | 0.0245      | 0.1068 -0.0 | 1634 -0.0121 | -0.1309 0.14   | J3 U.1354   | 0.0456 0.3  | 2295 -0.    | .2245 -0.2044   | ¥ 0.3072   | -0.1270 0.05  | 70 0.0561   | 0.1014 0.085   | 1 0.1098 U   | 0.16         | 28 0.2779  | 0.1727 0.   | 0.0918 -0.0   | 0558 0.1950 | -0.1343 0.2  | 2539 0.1869    | 0.3842 0.2987     | 10.000        |
| at po       | odiui I | -0.1849    | 0.2030 0   | .1373 -0.3  | 2638 -0.00 | 73 0.0060  | 0.0025 0.0   | 223 0.0171  | 0.0153    | -0.0352 -0. | 0273 0.1077  | 0.1936    | -0.0811 -0.1 | ∠⊨∠ =0.0211 | -0.0225     | 0.1798 -0.1 | 414 -0.0403  | 5 -0.1800 0.32 | 47 U.U968   | 0.0131 0.3  | 3710 -U.    | .ario -0.2495   | 5 U.SS16   | -0.3128 0.05  | 85 U.U249   | 0.4021 0.285   | 7 U.9552 L   | 12807 0.37   | 67 U.4116  | 0.2068 0.   | U.T. U.T.     | 382 0.3210  | -0.1365 0.3  | 3233 0.2549    | 0.6247 0.3228     | 0.2821 10.000 |

Appendix XI. Stata Do file use "C:\Users\Leo\Documents\Scriptie\STATA\Scriptie.dta", clear

.Set matsize 99999

destring floorspace, replace force dpcomma

destring rent\_score, replace force dpcomma

destring utilities, replace force dpcomma

destring quant\_comm, replace force dpcomma

destring d\_departmentstore gla\_departmentstore ai\_b1\_departmentstore ai\_b2\_departmentstore d\_supermarket gla\_supermarket ai\_b1\_supermarket ai\_b2\_supermarket d\_drug\_stores gla\_drug\_stores ai\_b1\_drugstores ai\_b2\_drugstores d\_fashion gla\_fashion ai\_b1\_fashion ai\_b2\_fashion d\_hobbies gla\_hobbies ai\_b1\_hobbies ai\_b2\_hobbies d\_shoes\_leather gla\_shoes\_leather ai\_b1\_shoes\_leather ai\_b2\_shoes\_leather d\_optics\_jewelry gla\_optics\_jewelry ai\_b1\_optics\_jewelry ai\_b2\_optics\_jewelry d\_media gla\_media ai\_b1\_media ai\_b2\_media d\_domestic\_luxury gla\_domestic\_luxury ai\_b1\_domestic\_luxury ai\_b2\_domestic\_luxury d\_sport\_games gla\_sport\_games ai\_b1\_sport\_games ai\_b2\_sport\_games d\_art\_antique gla\_art\_antique ai\_b1\_art\_antique ai\_b2\_art\_antique d\_flora\_fauna gla\_flora\_fauna ai\_b1\_flora\_fauna ai\_b2\_flora\_fauna d\_electronics gla\_electronics ai\_b1\_electronics ai\_b2\_electronics d\_car\_bike gla\_car\_bike ai\_b1\_car\_bike ai\_b2\_car\_bike d\_diy gla\_diy ai\_b1\_diy ai\_b2\_diy d\_lifestyle gla\_lifestyle ai\_b1\_lifestyle ai\_b2\_lifestyle, replace force dpcomma

destring ai\_beta1 ai\_beta2 af\_apoth af\_ziek\_i af\_ziek\_e af\_superm af\_daglmd af\_warenh af\_cafe af\_cbd af\_restau af\_hotel af\_kdv af\_bso af\_ondbas af\_ondvrt af\_oprith af\_treinst af\_zwemb af\_biblio af\_bios af\_sauna af\_attrac af\_podium, replace force dpcomma

rename v30 YEAR drop if missing(lnai\_b2\_fashion) drop if missing(lnfloorspace) drop if missing(lnai\_b2\_departmentstore) drop if missing(lnai\_b2\_supermarket) \*Energy rename energielabel ENERGY gen GreLabel = (ENERGY>18) gen OraLabel = (ENERGY>14 <18) gen RedLabel = (ENERGY <13) gen Nolabel = (ENERGY<11) egen Energycat = cut(ENERGY), at(10,15,18,22) generate byte Energylabel=13 if ENERGY<=13

generate byte Energylabel=17 if ENERGY<=17

replace agecat=38 if age>21 & age<=38 replace agecat=64 if age>38 & age<=64 replace agecat=75 if age>64 & age<. recode ENERGY (#/# = #) (0/10 = 0) (11/14 = 1) (15/18 = 2) (18/21 = 3)recode ENERGY (11 12 13 14 = 1) recode ENERGY (15 16 17 = 2) recode ENERGY (18 19 20 21 = 3) drop if ENERGY>10 tabulate ENERGY, gen (Energycat) generate byte Energylabel=1 if ENERGY<=1 \*Green label generate byte GrEnergylabel=1 if ENERGY=>18 & ENERGY<=21 \*Orange label generate O.Energylabel=3 if ENERGY=>14 & ENERGY<=17 \*Red label replace R.Energylabel=4 if ENERGY<=13 \*categories tabulate age\_category, gen(age) tabulate dwelling\_type, gen (dwel\_t) tabulate single\_multi, gen (fam) tabulate living\_environment, gen (environ) tabulate YEAR, gen (year) \*logs gen InRENT\_PM=In( rent\_pm) gen InIncome=In( incomehousehold) gen InPop\_dens=In( pop\_dens) gen InQuant comm=In( quant comm) gen InParking=In( parking) gen Infloorspace=In( floorspace) gen lnai\_b1\_fashion=ln( ai\_b1\_fashion) gen lnb1\_ai\_hobbies =ln( ai\_b1\_hobbies ) gen lnb1\_ai\_shoes\_leather =ln( ai\_b1\_shoes\_leather ) gen lnb1\_ai\_optics\_jewelry =ln( ai\_b1\_optics\_jewelry )

gen lnb1\_ai\_media=ln( ai\_b1\_media )

- gen lnb1\_ai\_domestic\_luxury=ln( ai\_b1\_domestic\_luxury )
- gen lnb1\_ai\_sport\_games =ln( ai\_b1\_sport\_games )
- gen lnb1\_ai\_art\_antique =ln( ai\_b1\_art\_antique )
- gen lnb1\_ai\_flora\_fauna =ln( ai\_b1\_flora\_fauna )
- gen lnb1\_ai\_electronics =ln( ai\_b1\_electronics )
- gen lnb1\_ai\_car\_bike =ln( ai\_b1\_car\_bike )
- gen lnb1\_ai\_diy =ln( ai\_b1\_diy )
- gen lnb1\_ai\_lifestyle =ln( ai\_b1\_lifestyle )
- gen lnai\_b1\_departmentstore =ln( ai\_b1\_departmentstore )
- gen lnai\_b1\_supermarket =ln( ai\_b1\_supermarket )
- gen lnai\_b1\_drugstores =ln( ai\_b1\_drugstores )
- gen lnai\_b2\_fashion=ln( ai\_b2\_fashion)
- gen lnb2\_ai\_hobbies =ln( ai\_b2\_hobbies )
- gen lnb2\_ai\_shoes\_leather =ln( ai\_b2\_shoes\_leather )
- gen lnb2\_ai\_optics\_jewelry =ln( ai\_b2\_optics\_jewelry )
- gen lnb2\_ai\_media=ln( ai\_b2\_media )
- gen lnb2\_ai\_domestic\_luxury=ln( ai\_b2\_domestic\_luxury )
- gen lnb2\_ai\_sport\_games =ln( ai\_b2\_sport\_games )
- gen lnb2\_ai\_art\_antique =ln( ai\_b2\_art\_antique )
- gen lnb2\_ai\_flora\_fauna =ln( ai\_b2\_flora\_fauna )
- gen lnb2\_ai\_electronics =ln( ai\_b2\_electronics )
- gen lnb2\_ai\_car\_bike =ln( ai\_b2\_car\_bike )
- gen lnb2\_ai\_diy =ln( ai\_b2\_diy )
- gen lnb2\_ai\_lifestyle =ln( ai\_b2\_lifestyle )
- gen lnai\_b2\_departmentstore =ln( ai\_b2\_departmentstore )
- gen lnai\_b2\_supermarket =ln( ai\_b2\_supermarket )
- gen Inai\_b2\_drugstores =In( ai\_b2\_drugstores )
- \*model I

regress InRENT\_PM Infloorspace parking pop\_dens i.ENERGY year1 year2 year3 year4 year5 year6 year7 year8 age1 age2 age3 age4 age5 age6 dwel\_t1 dwel\_t2 dwel\_t3 dwel\_t4 dwel\_t5 dwel\_t6 dwel\_t7 fam1 fam2 environ1 environ2 environ3 environ4 environ5 af\_cbd af\_apoth af\_ziek\_i af\_cafe af\_restau af\_hotel af\_kdv af\_bso af\_ondbas af\_ondvrt af\_oprith af\_treinst af\_zwemb af\_bios af\_sauna af\_attrac af\_podium i.postal\_code, cluster (postal\_code)

#### \*model II BETA 1

regress InRENT\_PM Infloorspace parking pop\_dens i.ENERGY year1 year2 year3 year4 year5 year6 year7 year8 age1 age2 age3 age4 age5 age6 dwel\_t1 dwel\_t2 dwel\_t3 dwel\_t4 dwel\_t5 dwel\_t6 dwel\_t7 fam1 fam2 environ1 environ2 environ3 environ4 environ5 af\_cbd af\_apoth af\_ziek\_i af\_cafe af\_restau af\_hotel af\_kdv af\_bso af\_ondbas af\_ondvrt af\_oprith af\_treinst af\_zwemb af\_bios af\_sauna af\_attrac af\_podium Inai\_b1\_fashion Inb1\_ai\_hobbies Inb1\_ai\_shoes\_leather Inb1\_ai\_optics\_jewelry Inb1\_ai\_media Inb1\_ai\_sport\_games Inb1\_ai\_art\_antique Inb1\_ai\_flora\_fauna Inb1\_ai\_electronics Inb1\_ai\_car\_bike Inb1\_ai\_diy Inb1\_ai\_lifestyle Inai\_b1\_departmentstore Inai\_b1\_supermarket Inai\_b1\_drugstores i.postal\_code, cluster (postal\_code)

#### \*model III BETA 2

regress InRENT\_PM Infloorspace parking pop\_dens i.ENERGY year1 year2 year3 year4 year5 year6 year7 year8 age1 age2 age3 age4 age5 age6 dwel\_t1 dwel\_t2 dwel\_t3 dwel\_t4 dwel\_t5 dwel\_t6 dwel\_t7 fam1 fam2 environ1 environ2 environ3 environ4 environ5 af\_cbd af\_apoth af\_ziek\_i af\_cafe af\_restau af\_hotel af\_kdv af\_bso af\_ondbas af\_ondvrt af\_oprith af\_treinst af\_zwemb af\_bios af\_sauna af\_attrac af\_podium Inai\_b2\_fashion Inb2\_ai\_hobbies Inb2\_ai\_shoes\_leather Inb2\_ai\_optics\_jewelry Inb2\_ai\_media Inb2\_ai\_sport\_games Inb2\_ai\_art\_antique Inb2\_ai\_flora\_fauna Inb2\_ai\_electronics Inb2\_ai\_car\_bike Inb2\_ai\_diy Inb2\_ai\_lifestyle Inai\_b2\_departmentstore Inai\_b2\_supermarket Inai\_b2\_drugstores i.postal\_code, cluster (postal\_code)

\*Residuals

predict r

\*Assumptions

Describe

summarize InRENT\_PM Infloorspace parking pop\_dens i.ENERGY year1 year2 year3 year4 year5 year6 year7 year8 age1 age2 age3 age4 age5 age6 dwel\_t1 dwel\_t2 dwel\_t3 dwel\_t4 dwel\_t5 dwel\_t6 dwel\_t7 fam1 fam2 environ1 environ2 environ3 environ4 environ5 af\_cbd af\_apoth af\_ziek\_i af\_cafe af\_restau af\_hotel af\_kdv af\_bso af\_ondbas af\_ondvrt af\_oprith af\_treinst af\_zwemb af\_bios af\_sauna af\_attrac af\_podium Inai\_b2\_fashion Inb2\_ai\_hobbies Inb2\_ai\_shoes\_leather Inb2\_ai\_optics\_jewelry Inb2\_ai\_media Inb2\_ai\_sport\_games Inb2\_ai\_art\_antique Inb2\_ai\_flora\_fauna Inb2\_ai\_electronics Inb2\_ai\_car\_bike Inb2\_ai\_diy Inb2\_ai\_lifestyle Inai\_b2\_departmentstore Inai\_b2\_supermarket Inai\_b2\_drugstores

summarize InRENT\_PM Infloorspace parking pop\_dens i.ENERGY year1 year2 year3 year4 year5 year6 year7 year8 age1 age2 age3 age4 age5 age6 dwel\_t1 dwel\_t2 dwel\_t3 dwel\_t4 dwel\_t5 dwel\_t6 dwel\_t7 fam1 fam2 environ1 environ2 environ3 environ4 environ5 af\_cbd af\_apoth af\_ziek\_i af\_cafe af\_restau af\_hotel af\_kdv af\_bso af\_ondbas af\_ondvrt af\_oprith af\_treinst af\_zwemb af\_bios af\_sauna af\_attrac af\_podium Inai\_b1\_fashion Inb1\_ai\_hobbies Inb1\_ai\_shoes\_leather Inb1\_ai\_optics\_jewelry Inb1\_ai\_media Inb1\_ai\_sport\_games Inb1\_ai\_art\_antique Inb1\_ai\_flora\_fauna Inb1\_ai\_electronics Inb1\_ai\_car\_bike Inb1\_ai\_diy Inb1\_ai\_lifestyle Inai\_b1\_departmentstore Inai\_b1\_supermarket Inai\_b1\_drugstores i.postal\_code correlate InRENT\_PM Infloorspace parking pop\_dens year1 year2 year3 year4 year5 year6 year7 year8 age1 age2 age3 age4 age5 age6 dwel\_t1 dwel\_t2 dwel\_t3 dwel\_t4 dwel\_t5 dwel\_t6 dwel\_t7 fam1 fam2 environ1 environ2 environ3 environ4 environ5 af\_cbd af\_apoth af\_ziek\_i af\_cafe af\_restau af\_hotel af\_kdv af\_bso af\_ondbas af\_ondvrt af\_oprith af\_treinst af\_zwemb af\_bios af\_sauna af\_attrac af\_podium

correlate InRENT\_PM Inai\_b2\_fashion Inb2\_ai\_hobbies Inb2\_ai\_shoes\_leather Inb2\_ai\_optics\_jewelry Inb2\_ai\_media Inb2\_ai\_sport\_games Inb2\_ai\_art\_antique Inb2\_ai\_flora\_fauna Inb2\_ai\_electronics Inb2\_ai\_car\_bike Inb2\_ai\_diy Inb2\_ai\_lifestyle Inai\_b2\_departmentstore Inai\_b2\_supermarket Inai\_b2\_drugstores

summarize rent\_pm InRENT\_PM Infloorspace parking pop\_dens i.ENERGY year1 year2 year3 year4 year5 year6 year7 year8 age1 age2 age3 age4 age5 age6 dwel\_t1 dwel\_t2 dwel\_t3 dwel\_t4 dwel\_t5 dwel\_t6 dwel\_t7 fam1 fam2 environ1 environ2 environ3 environ4 environ5 af\_cbd af\_apoth af\_ziek\_i af\_cafe af\_restau af\_hotel af\_kdv af\_bso af\_ondbas af\_ondvrt af\_oprith af\_treinst af\_zwemb af\_bios af\_sauna af\_attrac af\_podium Inai\_b2\_fashion Inb2\_ai\_hobbies Inb2\_ai\_shoes\_leather Inb2\_ai\_optics\_jewelry Inb2\_ai\_media Inb2\_ai\_sport\_games Inb2\_ai\_art\_antique Inb2\_ai\_flora\_fauna Inb2\_ai\_electronics Inb2\_ai\_car\_bike Inb2\_ai\_diy Inb2\_ai\_lifestyle Inai\_b2\_departmentstore Inai\_b2\_supermarket Inai\_b2\_drugstores

graph matrix InRENT\_PM Infloorspace

graph matrix InRENT\_PM Inai\_b2\_fashion Inb2\_ai\_hobbies Inb2\_ai\_shoes\_leather Inb2\_ai\_optics\_jewelry Inb2\_ai\_media Inb2\_ai\_sport\_games Inb2\_ai\_art\_antique Inb2\_ai\_flora\_fauna Inb2\_ai\_electronics Inb2\_ai\_car\_bike Inb2\_ai\_diy Inb2\_ai\_lifestyle Inai\_b2\_departmentstore Inai\_b2\_supermarket Inai\_b2\_drugstores kdensity r, normal

pnorm r qnorm r rvfplot, yline(0) avplots swilk r estat hettest scatter r RENT\_PM