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A B S T R A C T

Big data analytics can offer Geography new ways of understanding complex
socio-spatial processes, especially with the increasingly available amount of
data that is produced by society. This thesis explores the potential of ma-
chine learning in Geography via a case study of neighbourhood level gen-
trification prediction. Several machine learning algorithms are compared;
XGBoost, CatBoost, and Random Forest regression outperform standard
quantitative methods. The implementation of SHapley Additive exPlana-
tions (SHAP) as a way of interpreting machine learning models is explored,
and suggests that SHAP is a promising solution to the need for explain-
able machine learning models. Future gentrification prediction reveals that
model specification has substantial impact on result interpretation and prac-
tical applicability, and suggests that theoretical foundation remains a key
factor in future development of the research field. Machine learning pro-
vides a lot of new opportunities for geography but it is also important to be
critical of its promises.
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1
I N T R O D U C T I O N

The increasingly available amount of data that our society produces presents
many new opportunities for quantitative geographic research. Kitchin (2014,
p. 5) characterizes this as a Data Revolution and typifies the observation as
the emergence of data-driven science, which “seeks to hold to the tenets of
the scientific method, but is more open to using a hybrid combination of ab-
ductive, inductive and deductive approaches to advance the understanding
of a phenomenon”. The aim of data-driven science is to generate insights
‘born from data’ instead of the more conventional ‘born from theory’ ap-
proach.

The field of Artificial Intelligence is essential to Big Data analytics (also
referred to as Data Science). Machine Learning algorithms are tradition-
ally used for tasks such as Computer Vision (e.g. object detection), Natural
Language Processing, and Recommender Systems. Engagement by “main-
stream” data scientists with geographical methods and thinking has been
fairly minimal to date (Arribas-Bel and Reades, 2018), although quite a lot
of the Big Data generated by our society is spatially embedded and that geo-
graphical traditions may have much to offer to “Big Data” research (Arribas-
Bel and Reades, 2018). Applying Data Science methods to the field of Geog-
raphy can offer us new ways of modelling complex socio-spatial processes,
which can result in novel and potentially fundamentally different insights
into both new and already established work within the geographic domain.
Big Data analytics enables an entirely new epistemological approach for
making sense of the world; rather than testing a theory by analyzing rel-
evant data, new data analytics seek to gain insights ‘born from the data’
(Kitchin, 2014). Singleton and Arribas-Bel (2019) argue that there is sub-
stantial potential for the establishment of a Geographic Data Science within
Geography, noting benefits for the scientific field in terms of being able to
implement more effective, ethical, and epistemologically robust analytics;
as well as “sustaining the relevance of Geography and subdisciplinary ap-
proaches within a rapidly changing socio-technological landscape”.

An important question that arises is how complex it is to obtain the
aforementioned “more effective, ethical, and epistemologically robust ana-
lytics”. When do we deem a geographic analysis as robust? In what way is
this robustness limited in terms of data, and how does this differ between
methods? Due to how new Geographic Data Science is, there is barely
any domain knowledge present on how machine learning methods perform
when it comes to analyzing and predicting social phenomena. The work
of Reades et al. (2019) aims to understand urban gentrification in London
with the use of machine learning. Their analysis shows that the chosen
machine learning algorithm outperforms traditional quantitative methods.
Since their data and code are publicly available this makes their research a
worthwhile candidate for analyzing the robustness of machine algorithms
and data in geographic research.

Social relevance of this research can be found in that it attempts to im-
prove understanding of gentrification in a methodical way. Although the
topic of gentrification is chosen to function as an illustration of applied ma-
chine learning, research on gentrification is important for society because
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deeper knowledge of how and why urban areas experience economic up-
lift or decline can play an important role in society’s economic and social
policy formation. Gentrification is on one hand characterized by economic
improvement in a certain neighborhood, suggesting the phenomenon as a
positive one, yet this is also associated with displacement of original inhab-
itants and an increase of social inequality. If the methods outlined in this
thesis outperform current methods with less data, this would allow geog-
raphers to identify gentrification easier and improve the decision-making
process for policy makers. Academic relevance of this thesis is twofold.
It is interesting in a technological sense: how does Machine learning per-
form in the geographic domain algorithmically, and which model approach
produces optimal results? This provides AI researchers with new under-
standing and insight on the capabilities and limitations of machine learning
in non-traditional research domains, and can potentially contribute to the
development of new machine learning methods. On the other hand, this
type of research is also interesting from a geographical perspective. What
insights can we generate through machine learning that we cannot obtain
through more conventional research methods within the field of Geogra-
phy? These new insights can help geographers with gaining new, differ-
ent, and potentially better understanding of socio-spatial phenomena. For
example, machine learning can contribute to unlocking big data analytics
for geographic research, which makes it possible to perform research in a
new way. The topic of gentrification lends itself well to this aim, because
it is a complex field of study that would benefit from new quantitative ap-
proaches. Easton et al. (2019) for example remark that due to the multi-
dimensional character of gentrification, it would be preferable to identify
neighbourhoods undergoing gentrification using sensitivity testing for dif-
ferent univariate proxies.

Due to how new the field of research is— (Arribas-Bel and Reades, 2018)
propose it to be called Geographic Data Science (GDS) but it’s also referred
to in literature as Geocomputation—, we do not have any state-of-the-art
approaches or best practices available yet, apart from Reades et al. (2019)
own experimentation and a select few other exploratory approaches. This
means that on one hand there is not much existing research to go by, but it
also means that there’s a lot of low hanging fruit; a lot of new potentially
valuable insights can be acquired relatively easily. Experimenting with fea-
ture selection of variables in combination with machine learning can also
potentially benefit the field of Geography a lot. Another more practical po-
tential benefit could be that in future geographic research, better results can
be obtained with less (or less complete) data sets, which makes it easier to
perform quantitative humanities research.

The goal of this Master’s thesis is to perform a robustness analysis on
predicting and understanding gentrification at a neighborhood level with
the use of machine learning, and to expand upon this approach in a tech-
nical way and on a conceptual level. Since geography is a non-traditional
application field for AI models and is primarily concerned with relatively
complex social phenomena, interpretation of outcome therefore requires
more detailed understanding. Finding what is being modelled exactly in
geographic machine learning, and what it means for the usefulness of such
an approach are important questions to explore when moving towards an
integrated field of Geographic Data Science as defined by Arribas-Bel and
Reades (2018). This analysis on gentrification will provide results that al-
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low us to obtain new insight into the utility of machine learning as a new
methodological approach in geographic research.

The availability of data and code as outlined in Reades et al. (2019) makes
it possible to reproduce work and allows us to create new domain knowl-
edge by changing data, parameters, and predictive algorithm. Generating
furthering technical understanding is to be done through experimentation
with several alternative machine learning algorithms such as Support Vector
Machine (SVM), K-Nearest Neighbors, or Boosting algorithms. Finding out
the importance of used gentrification variable data will be achieved through
a feature analysis with SHapley Addition eXplanations (SHAP) (Lundberg
and Lee, 2017). The main research gap that can be identified for this thesis
is that although AI appears to generate promising results for geographic
topics such as gentrification, there has not yet been a critical evaluation of
these results and used methods.

This brings us to the following research question: how robust is Machine
Learning in the prediction and understanding of gentrification? The appli-
cation of machine learning algorithms and data science methods in the field
of Geography are rather sparse in the current published literature. As such,
there are questions pertaining to its effectiveness in explaining social phe-
nomena, the added value of these novel techniques compared to traditional
quantitative approaches, and its implications for the development of eco-
nomic and spatial policy. The already performed research by Reades et al.
(2019) on gentrification of London neighborhoods provides us with an ex-
cellent starting point for the answering of these questions, and allows us to
further explore the algorithm side as well as the potential practical value of
machine learning in geographic research. For this we define the following
four sub-questions:

1. In what way does our data impact machine learning decision-making
compared to more conventional regression approaches? A feature im-
portance analysis with SHAP allows us to find out which variables are
most important to include when it comes to predicting gentrification
at neighborhood level, and whether this combination of variables/fea-
tures is consistent across different model implementations.

2. Which algorithm is best suited for prediction of gentrification? (Ran-
dom Forest, KNN, SVM, Regression, Boosting algorithms?) Currently
in the literature only a tuned version of a Random Forest algorithm is
compared to linear regressions for gentrification prediction. It will be
interesting to see if better prediction scores can be achieved with dif-
ferent machine learning algorithms, such as Support Vector Machines
(SVM), K-Nearest Neighbors, and Tree Boosting. Linear regression
will be used as a benchmark. In addition, the algorithm comparison
enables us to compare model sensitivity of feature importance and of
future prediction.

3. Do comparable performance results also translate to comparable pre-
dictions of future neighborhood change? If we visualize gentrification
results from the machine learning model, are we able to observe any
distinct gentrification patterns?

4. What potential new domain knowledge can we obtain from this analy-
sis? What new findings or insights to be gained in terms of predictive
method and data considerations, and how do they help us in making
machine learning applied to social science work?
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The thesis is set up in the following way: 1) theoretical framework, 2)
method explanation, 3) results & discussion, 4) concluding remarks. The
theoretical chapter contains a section on the definition and measuring of
gentrification, an overview of machine learning in general, explanation of
used algorithms, and a section on relevant applied machine learning re-
search literature. The method chapter outlines data used, machine learning
analysis, feature importance explanation and evaluation metrics. The results
& discussion section contain machine learning performance results, SHAP
results, and gentrification map prediction and comparison.
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2
T H E O R E T I C A L B A C K G R O U N D

This thesis is positioned at an intersection of two different fields of study:
Human Geography and Data Science. Consequently, this theoretical chap-
ter will focus on explaining several concepts, theories and definitions of
both fields so readership from both fields will be able to sufficiently grasp
both the technical underpinnings and domain knowledge background. Ad-
ditionally, we will examine the implications of Machine Learning on the
production of geographic knowledge.

The first section contains the definitions of gentrification and how it is
quantified within scientific literature. This is because if we want to let a ma-
chine learning algorithm predict gentrification, we have to understand the
conceptual basis of first in order to adequately valuate such an approach.
Social concepts such as gentrification generally have a high degree of com-
plexity to them, and often there is no one agreed upon definition within the
research field. Having sufficient insight into the concept is therefore cru-
cial when it comes to interpreting and evaluating machine learning model
results, or else we risk the spatial aspect "to be rationalized only as a sup-
plementary column within a database, no more or less important than any
other attribute" (Singleton and Arribas-Bel, 2019). Domain knowledge is
incredibly important when it comes to selecting variable data in machine
learning (Guyon and Elisseeff, 2003), so finding out from literature which
variables are particularly important when it comes to neighbourhood gen-
trification will also be done in this section. Secondly, this theoretical chapter
will contain a primer on machine learning and related data science con-
cepts. This will include a basic overview of how machine learning works
and a conceptual explanation of the different machine learning algorithms
used in this research. We will also go over different machine learning imple-
mentations in social science literature, in order to compile machine learning
domain knowledge potentially relevant for the field of geography. The last
section details the considerations and implications of Machine Learning ap-
plied to Geography. What is the added value of Data Science/ML as a
tool for geographic research, and which ontological challenges need to be
resolved in order to make this approach work?

2.1 gentrification

The term gentrification was first coined by Ruth Glass in the early 1960s
as she observed the arrival of the ‘gentry’ and the accompanying social
transition of several districts in central London (Gregory et al., 2011). The
term was used to describe the London middle and upper classes moving
into the traditionally working-class neighbourhoods, with as a result the
displacement of incumbent residents and change of social character of the
neighbourhood. From this definition two important components can be
defined: 1) gentrification raises the economic level of a neighborhood popu-
lation, 2) gentrification changes a neighborhood’s social character or culture.
These components are important because they helped shape later defini-
tions (Barton, 2016). Over the years multiple definitions of gentrification
have been formulated, varying in conceptual focus and complexity, as well
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as opposing views of its effect on society. Gentrification is contested and
controversial. There are political and academic opponents—as well as advo-
cates—of the process (Helbrecht, 2018). Rigolon and Németh (2019) find that
explanations for gentrification vary widely from political–economic/supply-
side/production- oriented perspectives (Harvey, 1985; Smith and Sorkin,
1992; Smith, 2005) to social–cultural/demand-side/consumption-oriented
perspectives (Caulfield, 1994; Ley, 1994; Rose, 1996; Helbrecht, 2018). Pos-
itive impacts of gentrification include new investment in areas, service im-
provement, and creation of new jobs. A primary negative effect is that ‘orig-
inal’ neighborhood inhabitants are forced out of the gentrifying neighbour-
hood, either directly through policy implementation or indirectly as a result
of an increased cost of living. House value goes up due to newly increased
demand so rent prices adjust accordingly. Thus, gentrification is quite of-
ten seen as a displacement process that segregates the social strata of a city
along the social-spatial axis of wealth (Helbrecht, 2018). The research com-
munity now generally accepts that these competing explanations are better
understood as representing ends of a continuum and that both production
and consumption perspectives are crucially important in explaining, under-
standing, and dealing with gentrification (Rigolon and Németh, 2019).

2.1.1 Measuring Gentrification

Holm and Schulz (2018) observe that after more than 50 years of gentri-
fication research there is still no consensus about a measurement tool for
gentrification. This they primarily attribute to the lack of agreement on
a definition of gentrification. Definitions that have been used to identify
gentrification areas in empirical studies usually vary based on the selected
methodology. According to Barton (2016), in qualitative studies researched
neighbourhoods are frequently selected based on cultural changes due to de-
mographic shifts in neighbourhood populations, with much of the research
placing an emphasis on a transition from racial or ethnic neighbourhood cul-
tures to middle-class, white culture (Anderson, 2013; Maurrasse, 2014). This
shift in culture and demography was often related with change in housing
and local business. In quantitative studies on the other hand, the change
in the neighbourhood’s socio-demographic structure is considered to be the
key criterion for gentrification processes (Barton, 2016). Quantitative studies
often use a threshold strategy where neighbourhoods were identified as gen-
trifiable if they featured a particular characteristic or characteristics at the
beginning of a decade and gentrified if the characteristic changed in particu-
lar way. Both qualitative and quantitative approaches have their advantages,
as well as their shortcomings. For example, qualitative data will tend to be
richer in terms of research detail and explanatory power (Barton, 2016). This
complexity makes it also a lot more difficult to gather a sufficient amount
of data; taking into account factors such as physical, economic, social and
cultural neighbourhood changes will require data collection for all these fac-
tors. This increases complexity for data collection, model building, as well
as interpretation of findings. For quantitative approaches it is the other way
around: they easier to execute, but quite often lacks depth when it comes
to measuring more specific phenomena. Barton (2016) finds that while the
definitions used in quantitative strategies were easier to operationalize, they
often did not include references to changes in the ‘social character’ or local
culture.
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2.1.2 Quantitative neighborhood gentrification

Although the broad dimensions of gentrification are often agreed on, the op-
erationalization of these dimensions in terms of measurable variables is far
more difficult to define without ambiguity (Easton et al., 2019). For exam-
ple, Galster and Peacock (1986) find that variable selection has a significant
impact on which, and how many, census tract areas were identified as expe-
riencing gentrification. Their operationalization approach was to construct
several logistic regression models using census variables for Philadelphia
(1970-1980). A comparison study by Barton (2016) on gentrification measure-
ment strategies provides similar conclusions. The results were that each of
the strategies identified different neighborhoods undergoing gentrification.

Owens (2012) operationalizes neighbourhood gentrification through the
concept of Socio-economic Status (SES) as a metric for neighbourhood as-
cent. Neighbourhood ascent is defined as “neighbourhoods in which, at the
aggregate level, residents’ income, housing costs, and educational and occu-
pational attainment increased”. A metric for neighborhood SES is calculated
by combining 5 census data variables: average household income, average
house values, average gross rent, proportion of residents over 25 years old
with a BA, and proportion of workers over 16 years old working in a man-
agerial, technical, or professional (high-status) job. Principal Component
Analysis (PCA) is used to combine many correlated variables into one in-
dicator by assessing the similarities and differences among the variance of
each variable (Owens, 2012). Walks and Maaranen (2008) perform a simi-
lar experiment to identify gentrification on neighborhood level. They apply
PCA to four variables that are assumed to identify both timing and extent
of gentrification; average personal income, proportion of tenants, socioeco-
nomic status based on employment rate, and percentage of artists resident
in an area. Reades et al. (2019) utilize a Random Forest machine learning
model in order to relate neighborhood ascent in London. For operational-
ization of ascent they follow the method of Owens (2012). Furthermore they
include 166 different explanatory variables, including environmental mea-
sures such as the amount of green space available, and average travel time
to central London. Holm and Schulz (2018) propose a model called Gen-
triMap for measuring gentrification and displacement in Berlin. They define
gentrification as the conjunction of social upgrading and real-estate value in-
creases, which in the model is achieved via the construction of a real-estate
index and a social index to quantify the respective model components. The
real-estate index consists of four indicators: average rental prices offered, av-
erage prices for individually owned apartments, the number of apartments
offered for rent, and the number of apartments offered for sale. In addition,
they included the number of offers as an indicator variable since it provides
an indication of the extent of real-estate value increases. For the social in-
dex only one indicator variable is used: the number of transfer payment
recipients in accordance with the the German Social Insurance Code. This
indicator variable includes recipients of different types of welfare benefits,
and is interpreted as the lowest estimate of low-income people in an area.
The approach operationalizes a relational definition of gentrification, which
means that it measures gentrification processes solely in relation to the rest
of the city. For this thesis the selected operationalization of neighborhood
gentrification is the one defined by Owens (2012), because this enables us
to compare results from Reades et al. (2019) since they use this same defini-
tion. This comparison is needed in order to answer the formulated research
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questions. Using different gentrification metrics such as the one outlined
by Holm and Schulz (2018) is a potentially valuable alternative approach,
because this will allow comparison at a method level. Unfortunately this
method comparison does not fall into the scope of this thesis, and is instead
something for future research.

2.2 machine learning

2.2.1 Primer: what is Machine Learning?

According to Jordan and Mitchell (2015, p. 255), Machine Learning is a
discipline that is focused on two interrelated questions: "How can one con-
struct computer systems that automatically improve through experience?"
and "What are the fundamental statistical, computational, and information-
theoretic laws that govern all learning systems, including computers, hu-
mans, and organizations?”. While this definition does contain the essence
of what machine learning encompasses, it is still a quite technical definition
and requires some background knowledge of computer science to make
you as a reader fully understand. In more simple terms it is the field of
study that gives computers the ability to learn without being explicitly pro-
grammed; in machine learning computers learn from data instead of exe-
cuting a rule-based script that is written by a programmer. This is what is
meant by the “automatically improve through experience” part by Jordan
and Mitchell (2015). At its core computers require explicit instructions by a
human in order to function. A computer computes: in other words, it per-
forms a calculation. These machine instructions are written in something
called a programming language. A programming language can be imple-
mented at a hardware level: moving of 1s and 0s (binary) in a computer’s
memory, but it can also be abstracted into a programming language that
makes it easier to read and work with for a human (if this condition satis-
fied, then execute function). This difference in abstraction makes a program-
ming language a low-level or a high-level language. Choice of programming
language depends on whether computational performance or programming
flexibility is more important.

Machine learning is in a sense somewhat contradictory in its definition:
how is it possible for computers to do something without explicit instruc-
tions (“learn” from data) when they need instructions to function? This has
everything to do with how machine learning differs from “regular” rule-
based systems. A rule-based system functions through facts (data values in
a database) and user-crafted rules on what to with the data. These rules are
constructed to automate a human decision process: if data point exceeds a
certain value or matches with another data point, follow specified procedure.
Machine learning does not replicate this human specified decision process,
but instead “learns” only from the outcome. For example: why a certain
e-mail is considered a spam e-mail is not relevant for a machine learning
model, it only needs to know that people mark a certain message as spam.
The model does not need human-curated rules in order to perform the task,
which means it is very flexible in its application. Rule-based systems on
the other hand are limited by the fact that they only function within their
defined set of rules: dealing with special cases (not specified by the rule set)
is very difficult or impossible. Another problem with rule-based systems
is that for certain tasks data and domain knowledge change very quickly
and/or frequently: they change faster than it takes to update the rule set.
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This could also imply a nearly impossibly long set of rules if the task is
complex enough. Being able to surpass these challenges that rule-based sys-
tems face is what makes machine learning so powerful. Goodfellow et al.
(2016) therefore states that “the difficulties faced by systems relying on hard-
coded knowledge suggest that AI systems need the ability to acquire their
own knowledge, by extracting patterns from raw data”. He defines this
capability of learning from data as machine learning.

This learning from data approach makes it possible for computers to
perform tasks and tackle problems that involve real world understanding.
These “real world” problems are, ironically enough, quite difficult for a
computer to solve, while for humans they can be almost trivial. The op-
posite is true for formal, abstract problems: computers are very efficient at
calculating things like complex numbers or determining the shortest path
between two points on a map, or exactly reproducing information, which
is extremely difficult for a human. Why machine learning problems such
as object detection, face recognition or speech recognition are so difficult
for a computer and easy for a human is because the tasks require a lot of
knowledge about the world. Abstract problems such as finding the winning
steps for a game of tic-tac-toe are narrowly defined problems, do not contain
ambiguity or subjective knowledge, and therefore require only a limited set
of rules (knowledge). The human brain on the other hand is able to make
sense of this vast amount of subjective and ambiguous knowledge about ev-
erything just fine. Goodfellow et al. (2016) remarks that due to the fact that
much of this knowledge is subjective and intuitive, it is therefore difficult
to articulate in a formal way. And so if we want computers to behave in
an intelligent way (perform human tasks & deal with subjectivity) we will
need to be able to capture this informal knowledge. This is what machine
learning attempts to accomplish (sometimes quite successfully).

Now that we have outlined what machine learning is on a conceptual
level, we will now look at a few machine learning algorithms and how these
are implemented. Within the field of Machine Learning we make a distinc-
tion between different types of learning algorithms. Géron (2017) classifies
them in broad categories based on:

• Whether or not they are trained with human supervision (supervised,
unsupervised, semi-supervised, and Reinforcement Learning)

• Whether or not they can learn incrementally on the fly (online versus
batch learning)

• Whether they work by simply comparing new data points to known
data points, or instead detect patterns in the training data and build
a predictive model, much like scientists do (instance-based versus
model-based learning)

However, these are not exclusive criteria: there exists overlap between the
different categories, and it is possible to build a machine learning system
that is a combination of them. Although a thorough explanation of all three
categories is useful for a deeper understanding of machine learning, in re-
gard to their relevance for this thesis we will primarily focus on this first
category. Goodfellow et al. (2016) outlines the following tasks as most com-
mon for machine learning:

• Classification: computer program is asked to specify which defined
category some input belongs to

9



• Regression: computer program is asked to predict a numerical value
given some input

• Transcription: system is asked to observe an unstructured representa-
tion of data and transcribe this into a discrete structured form. Exam-
ples: optical character recognition (OCR), Speech recognition where
sound data is transcribed into text data.

• Structured output: computer program is asked to output important re-
lations between different elements. Examples: image captioning, nat-
ural language sentence parsing.

• Anomaly detection: computer program analyses a set of events and
determines unusual occurrences. Examples: spam detections, fraud
detection

• Imputation: program is asked to provide a prediction of values of
missing entries

The main difference between supervised and unsupervised learning al-
gorithms has primarily to do with how the data is structured. Goodfellow
et al. (2016) defines this difference as “by what kind of experience they (the
machine learning algorithms) are allowed to have during the learning pro-
cess”. In order to perform supervised learning, the data has to be labelled
(also called a target). This labelling is what makes the type of learning “su-
pervised”. Unsupervised learning on the other hand does not require labels,
but because of this also produces less powerful results. Semi-supervised
learning trains on partly labeled data and partly unlabeled data. Labels for
the whole dataset are generated using the labeled part. The term supervised
learning comes from the view that the label/target is being provided by an
instructor (human labelling); this label “supervises” the algorithm’s learn-
ing. In unsupervised learning the algorithm attempts to make sense of the
data without this label guide. Reinforcement learning functions quite dif-
ferently from the aforementioned types of learning (Géron, 2017). An agent
(the reinforcement learning system) learns by performing actions which re-
sults either in a reward or a penalty. Over time it performs actions until the
best strategy is formed: this strategy is called a policy.

2.2.2 Supervised Learning

According to Géron (2017) some of the most important supervised learning
algorithms are:

• k-Nearest Neighbours

• Linear Regression

• Logistic Regression

• Support Vector Machines (SVMs)

• Decision Trees and Random Forests

• Neural networks

Certain neural network architectures can be unsupervised (auto-encoders,
restricted Boltzmann) or semi-supervised (deep belief networks, unsuper-
vised pre-training) (Géron, 2017). Figure 2.1 below illustrates how super-
vised machine learning works on a conceptual level.
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Figure 2.1: Supervised learning conceptual diagram, from Scikit-learn
(2011).

The first step of supervised learning is to divide the data into two dif-
ferent sets: a training set and a test set. The machine learning model will
be created with the training set, and the test set is used to evaluate the per-
formance of the machine learning model. Training data is transformed into
feature vectors so that the machine learning algorithm can fit this together
with the accompanying label data into a predictive model. The final predic-
tive model is then able to make expected labels for the test set, which can
then be compared to the actual labels (ground proof) to estimate how well
the model performs.

2.2.3 Support Vector Machines

A Support Vector Machine (SVM) is a popular Machine Learning model
that is particularly well suited for for classification of complex but small-
or medium-sized datasets (Géron, 2017). It is capable of performing linear,
nonlinear classification, regression, and outlier detection. The main concept
behind SVM classification is to separate classes by fitting the widest possible
’street’ (or margin width) between classes. Figure 2.2 visualizes this widest
street classification. In the figure red and green instances are separated by
the dotted line. This line is established by calculating the largest margin
width. The margin lines that run parallel with the decision boundary are
determined by the instances located on these lines. These instances are
called the support vectors. Any instance that is not on the "street" is not a
support vector, and has no influence on the decision boundary. Computing
predictions in this model is therefore only based on the support vectors, and
not the whole training data set.

Defining a strict model where all instances are outside of the boundary
margin and where each instance is positioned on the correct side of the
boundary is called hard margin classification. Two consequences of hard
margin classification are that the model can only be applied linearly separa-
ble data, and that outliers can influence performance a lot. A more flexible
approach is soft margin classification. Here the model tries to compromise
between completely separating classes and having the widest margin or
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Figure 2.2: Support Vector Machine algorithm visualization from Sayad,
Saed (2012).

street. This is defined through a hyper-parameter that allows for tuning
between margin width and allowance of margin violations. SVM on non-
linear data can be approached with the following methods: polynomial fea-
tures, polynomial kernel, adding similarity features, or using an RBF kernel
(Géron, 2017). SVM also can be applied to a regression task. The trick is
to reverse the objective: instead of trying to fit the largest possible street
between two classes while limiting margin violations, SVM Regression tries
to fit as many instances as possible on the street while limiting margin vio-
lations (Géron, 2017)

2.2.4 K-Nearest Neighbours

K-nearest neighbor (KNN) is a very simple machine learning algorithm in
which each observation is predicted based on its ’similarity’ to other obser-
vations (Boehmke and Greenwell, 2019). The algorithm stores all available
data points and calculates the distance between observations in a feature
space. Commonly used distance calculation metrics are Euclidean, Manhat-
tan, and Minkowski distance (Cunningham and Delany, 2007) The K stands
for the amount of nearest neighbors specified by the user, so if K=5 the
algorithm will find the five nearest observations. KNN can be applied to
classification tasks as well as regression problems. The main difference in
application is that with classification a majority voting takes place, while
with regression a mean is calculated between points. Although KNN usu-
ally isn’t the best choice in terms of performance, it does not require a lot
of parameter tuning to perform reasonably well. It also handles non-linear
relationships without any data engineering steps.

2.2.5 Ensemble Learning

Ensemble learning is a machine learning approach that combines several
predictors: predictions of all models are aggregated, after which a majority
voting takes place. Quite often this results in a better prediction than with
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the best individual predictor (Géron, 2017). A group of predictors is called
an ensemble, which is why the technique is called Ensemble Learning, and
a specific Ensemble algorithm is called an Ensemble method (Géron, 2017).
One widely used ensemble method is tree-based learning, which utilizes
ensembles of decision trees to predict. Figure 2.3 provides an overview
of how tree-based learning has evolved over the years, which starts with
decision trees and ends with optimized Gradient Boosting.

Figure 2.3: Evolution of tree-based learning overview, from Morde, Vishal
(2019).

Decision Trees

Decision trees work by breaking down a dataset into smaller subsets re-
cursively, ultimately forming a tree structured that can be understood and
traversed. The tree structure consists of decision nodes that lead into leaf
nodes. A decision node has two or more branches, with each containing a
value for the tested attribute (True/False; value within range, etc). The leaf
node is the result after traversing the decision tree. Decision Trees make very
few assumptions about the training data (Géron, 2017), which means that
without regularization steps the decision tree model will fit itself around the
dataset. This results in overfitting of the model and should be prevented.

Random Forests

A Random Forest model consists of an ensemble of decision trees, and uses
a data sampling method called bagging. Bagging (which stands for Boot-
strap Aggregating) is a general-purpose process for reducing the variance
of a statistical learning method (James et al., 2013), which is quite useful
when applied to decision trees, since these are prone to overfitting (James
et al., 2013). In bagging, multiple predictors (decision trees) of the same
machine learning algorithm are trained on different subsets of the training
data. When the predictors are trained, the ensemble predicts a final value
by aggregating the predictions of all predictors. Aggregation for regression
is done by calculating the average between all predictors, and for classifica-
tion majority vote is picked (also called mode). Each individual predictor
has a higher bias than if it were trained on the full training set, but ag-
gregation reduces both bias and variance (Géron, 2017). This leads to a
final model with similar bias but a lower variance (less overfitting) than a
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single decision tree trained on the full data set. One disadvantage of this ap-
proach however is that the model becomes more difficult to interpret (James
et al., 2013). Random Forests provide an improvement over bagged trees by
tweaking the algorithm so the generated trees become decorrelated (James
et al., 2013). Extra randomness is introduced when growing trees; instead
of searching for the very best feature when splitting a node, the algorithm
searches for the best feature among a random subset of features. This makes
it so the overall strongest feature isn’t always picked first, and gives other
(moderately strong) features more of a chance. The result of this is a more
diverse (decorrelated) set of decision trees, which results in an overall better
predictive model (Géron, 2017).

Boosting

Boosting is an approach that is similar to bagging and Random Forest
(James et al., 2013) in that it uses multiple weak learners (in this case de-
cision trees) and combines them into a strong learner. The key difference
however is that with Boosting the decision trees are created sequentially:
each subsequent tree is created using information from previously grown
trees. This is different from bagging because there is no bootstrap sampling
of the data involved. Instead, the decision tree is trained on a modified
version of the complete dataset. Figure 2.4 provides a visual comparison of
boosting, bagging, and single iteration (normal) machine learning. Gener-
ally, statistical learning approaches that learn slowly tend to perform well
(James et al., 2013). In Boosting this is done with the sequential fitting of the
decision trees. First a decision tree is trained on the data set. The next deci-
sion tree is fit using the residuals from the earlier decision tree. This step is
repeated a number of times with updated residual data as input. Each tree
can be small with only a few nodes.

Figure 2.4: The difference between bagging and boosting, from aporras
(2016).

There are many different boosting methods available, with the most pop-
ular being AdaBoost (Adaptive boosting) and Gradient boosting (Géron,
2017). The AdaBoost method was originally proposed by Freund et al. (1999)
and works by assigning weights to incorrectly classified observations. Gra-
dient boosting on the other hand utilizes a technique called Gradient De-
scent. XGBoost (eXtreme Gradient Boosting) by Chen and Guestrin (2016)
is a widely used implementation of gradient boosting that is capable of
achieving state-of-the-art results.
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2.3 machine learning applied in geography-related fields

There is not much literature on the applications of machine learning in the
field geography currently available. The reason for this is that advance-
ments in Machine Learning have occurred only relatively recently, which
means that spillover of methods to other fields of study is only just begin-
ning. Much of the foundation of ML in Geography has yet to be formed,
best practices and state-of-the-art approaches to prediction tasks still need
to be found. For example, Brunsdon (2016) provides a progress report on re-
producible quantitative research in human geography, but does not mention
any applications of artificial intelligence, machine learning or data science.
However, he notes that trends suggest a turn towards "the creation of al-
gorithms and codes for simulation and the analysis of Big Data", which
indicates a willingness within the field to move towards a Geographic Data
Science (outlined in Singleton and Arribas-Bel, 2019), but is simply not at
that stage yet. Additionally, while some AI implementations do exist within
geography (Hu et al., 2019), this is predominantly for physical geography
and not so much human geography. These are applications such as: au-
tomatic terrain feature recognition, land cover classification, and ecological
habitat prediction.

A relevant related field to acquire potential domain knowledge from
is that of real estate. The relevance to gentrification research is based on
the fact that multiple measures of neighborhood gentrification are at least
partly derived from housing prices (Reades et al., 2019; Holm and Schulz,
2018; Guerrieri et al., 2013). The assumption that we make is that there
exists enough similarity between these two types of research, in terms of
data and on a conceptual level, that domain knowledge for real estate value
prediction (i.e. model specification, parameter tuning, dimension reduc-
tion) is potentially useful for gentrification prediction as well. Graczyk et al.
(2010) compare bagging, boosting, and stacking ensembles applied to real
estate appraisal. Their results show that there is no single algorithm which
produces the best ensembles. Park and Bae (2015) utilize and compare a
selection of machine learning models for housing price prediction of Fairfax
County, Virginia. The selected algorithms are C4.5, RIPPER, Naive Bayes,
AdaBoost; C4.5 and RIPPER are decision based. Performance is measured
via minimum error rate, and they find that RIPPER performs best, followed
by AdaBoost. Wang et al. (2014) apply particle swarm optimization (PSO)
in combination with Support Vector Machine (SVM) to real estate price fore-
casting, where PSO is used to optimize SVM parameters. Results indicate
that this approach produces good real estate price forecasting performance.

2.4 production of geographic knowledge with ml

Singleton and Arribas-Bel (2019) formulate two important considerations
when it comes to Data Science applied to geographic questions: 1) of what
or where are the underlying data representative, 2) how divergent is the ex-
traction of knowledge within this context from more widely accepted episte-
mologies such as those emerging from Quantitative Geography, Geographic
Information Science, or Geocomputation?

Supervised machine learning uses labeled data to learn and serves as the
ground truth for the predictive model. This label can be a category (nomi-
nal), point scale (ordinal), or an exact value (ratio). In traditional machine
learning prediction tasks the assumption that a label for a certain case ac-
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curately reflects truth is generally accepted. Usually the labeling task itself
is relatively straight-forward, and measuring of inter-annotator agreement
is quite often used to obtain a robust set of labelled data. Inter-annotator
agreement is a measurement score used to assess the reliability of an anno-
tation process, which is a requirement if we want to assume that our dataset
and subsequent analysis are methodically correct. The most common way
of reporting agreement is via Cohen’s Kappa, Fleiss K, or Krippendorff’s
Alpha (Artstein, 2017). When it comes to geographic research this labelling
approach becomes much more of a challenge. The primary reason for this
difficulty is that the subject of prediction —gentrification in this case— is a
lot more complex in nature. For example: we can establish relatively easily
when an image contains a car or not. Gentrification, on the other hand, is
such a broad and multi-faceted concept that it is difficult to define and label.

Ultimately, the question arises how closely it is that our data and pre-
dictive model approximate reality. In other words, are the results from
our machine learning model sufficiently representative? When we attempt
to define when data and method are sufficiently representative, we need
to take into consideration correctness as well as feasibility of our method.
There is a trade-off between quality and quantity of research. If require-
ment definitions for data quality are too strict, research will never be good
enough. On the other if we are too pragmatic in our approach, results lose
in value. Trade-off decisions need to be documented, so we can take into ac-
count considerations when compromising on data and approach. In terms
of predicting gentrification this means it is important to explain what data
is used, how it is used, and what potential limitations of the method are.
Which definition of gentrification are we attempting to quantify, and what
relevant aspects are we not capturing with our data that could significantly
influence our results? Geography should not be reduced to a set of spatial
coordinates in a machine learning data set, because this strongly increases
the risk of not being able to adequately assess the value created predic-
tive machine learning model. Data can be interpreted free of context and
domain-specific expertise, but the result will be that epistemological inter-
pretation is likely to be anaemic or unhelpful as it lacks embedding in wider
debates and knowledge Kitchin (2014). A new Data-driven approach of do-
ing research should not forgo domain expertise, but instead be integrated
within the research space of geography. Geography has the potential to com-
plement Data Science by bringing, literally and epistemologically speaking,
the role of context and decades of experience with these questions (Single-
ton and Arribas-Bel, 2019). If we want self learning systems to advise and
aid us in answering scientific questions we also be able to critically evaluate
this new approach in order for Machine Learning to useful in solving geo-
graphic challenges. This is an important role for geographers. Kitchin (2014)
suggests a new epistemology that employs the methodological approach of
data-driven science within a different epistemological framing that enables
social scientists to draw valuable insights from Big Data that are situated
and reflexive.
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3
M E T H O D

The aim of this thesis is to analyze and evaluate the effectiveness of machine
learning applied in geographic context. This is done via the task of neigh-
borhood gentrification prediction as outlined in Reades et al. (2019). The
analysis consists of three parts. Firstly, comparing performance between
a selected set of machine learning algorithms in order to find out which
model approach is best suited for the task of predicting gentrification in
terms of regression evaluation metrics. Secondly, the goal is to find out
which variables/features are most important in explaining each machine
learning model. Model explanation is done via the implementation of the
SHAP (Lundberg and Lee, 2017) library. SHAP stands for SHapley Addi-
tive exPlanations. The third part of this research is to forecast and compare
future gentrification, using the best performing models.

3.1 data

The original data used comes from research presented by Reades et al.
(2019), and consists of processed census data from the 2001 and 2011 UK
Census of Population and the London Data Store 1. Table 3.1 contains the
variables that are used to construct Socio-economic scores (SES) for London
neighborhoods. These variables encompass neighborhood averages for in-
come, house value, occupational employment, and qualification level. Table
3.2 contains the variables used to predict the corresponding SES for London
neighborhood level gentrification.

Table 3.1: Gentrification composite score (SES) variables

London Scoring Data
LSOA Household income
Median housing & sales
Occupational share
Highest level of qualification

Table 3.2: Modeling data used to predict London gentrification

London modeling data
Green space & access Age structure
Dwelling period built National Socio econ classification (NS-SeC)
Travel time to major infrastructure Economic activity
Travel time to bank station Country of Birth
My Fare Zone Dependent children
Travel mode Population density
Cars & vans Household composition
Real Estate tenure Industry
Hours worked Marital status
Ethnicity Religion

1 Data, processing scripts and further explanation are available at https://github.com/jreades/
urb-studies-predicting-gentrification.
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3.2 method analysis

Neighborhood socio-economic score (SES) is predicted with the following
machine learning regression algorithms:

• Support Vector Regression (SVR)

• K Nearest Neighbor (KNN)

• Random Forest (RF)

• XGBoost

• CatBoost

• AdaBoost

• Linear Regression

• Ridge Regression

Reades et al. (2019) use Random Forests to analyze and predict gentrifi-
cation in London neighborhoods, based on 2001 and 2011 Census variable
data. Gentrification at the neighborhood level is operationalized in term
of socioeconomic score (SES), which is calculated through a combination of
variables: household income, house value, occupational share, and highest
level of qualification at neighborhood level. Principal Component Analysis
(PCA) is used to obtain the SES, which is used to measure neighborhood
ascent or descent. Model prediction performance is analyzed and evalu-
ated by training the model on 2001 data and testing this on 2011 actual
values. Data from 2011 is then used to predict those areas most likely to
demonstrate ‘uplift’ or ‘decline’ by 2021. The results show improvement
over linear regression even without hyperparameter tuning.

The machine learning models are trained with census data from 2001

to predict SES Ascent target scores (2011 SES minus 2001 SES). To predict
future gentrification, the trained model is given 2011 census data. The tech-
nical analysis is done in Python. Python is a high-level programming lan-
guage suited for scientific and engineering code that for most cases is fast
enough to be immediately useful as well as flexible enough to be sped up
with additional extensions (Oliphant, 2007). Machine learning algorithms
implemented via Scikit-learn (Pedregosa et al., 2011), which is a Python
module that integrates a wide range of state-of-the-art machine learning
algorithms for medium-scale supervised and unsupervised problems (Pe-
dregosa et al., 2011). Data processing and structuring is done primarily
with the Pandas library (McKinney, 2011).

3.3 algorithm performance

3.3.1 Evaluation metrics

Since the choice has been made to perform a regression task, the following
metrics will be used to evaluate and compare prediction performance be-
tween models: R2, Mean Squared Error (MSE), Mean Absolute Error (MAE),
and explained variance. The R2 takes on a value between 0 and 1 and mea-
sures the proportion of variability in Y (dependent variable) that can be ex-
plained using X (independent variable) (James et al., 2013). MSE measures
the average of error squares, which is the average of squared differences

18



between predicted values and true (expected) value. MAE measures the av-
erage magnitude of errors without considering direction. These evaluation
metrics are decided upon in order to stay consistent with the earlier results
by Reades et al. (2019).

3.3.2 Optimization

Gentrification prediction performance of the different models is optimized
with hyper-parameter tuning. Hyper-parameters are parameters that are
not directly learnt within estimators, instead they must be set prior to train-
ing and remain constant during training of the model. Tuning hyperparam-
eters is an important part of building a Machine Learning system (Géron,
2017). Hyper-parameter tuning is normally carried out by hand, progres-
sively refining a grid over the hyperparameter space (Bardenet et al., 2013).
For this thesis the Scikit-Learn module GridSearchCV is used to exhaus-
tively consider sets of user specified parameter combinations.

3.4 model interpretation

An important aspect of obtaining new knowledge and understanding in
scientific research is to find out why phenomena happen in the way that
they do, and is usually done via the interpretation of results. In statistical
methods like linear regression this is achieved by interpreting coefficients,
but unfortunately in machine learning there is little consensus on what in-
terpretability is, and how to evaluate machine learning models for bench-
marking (Doshi-Velez and Kim, 2017). These relatively complex machine
learning models often have a more accurate predictive capability, but as a
downside their complexity means they are regarded as black-boxes when it
comes down to interpretation. The easy way to circumvent this interpreta-
tion problem would be to just use an appropriate linear model instead (Lin-
ear/Ridge), but with the increasing availability of Big Data (Kitchin, 2014)
this problem becomes worthwhile to solve for geographic research. The rea-
son for this is that machine learning approaches produce better results when
it comes to Big Data. Lundberg and Lee (2017) propose a framework called
SHAP (SHapley Additive exPlanations) to solve this lack of interpretability
in Machine Learning. SHAP is a unified approach to interpreting model
predictions, and utilizes game theory to accomplish this. The SHAP frame-
work implementation is available as a library in Python and R programming
languages.

Figure 3.1: A blackbox model versus SHAP conceptual visualization, from
Lundberg et al. (2019).

The approach of SHAP to explaining complex models such as ensem-
ble methods or deep learning models is to not use the original model, but

19



rather to define a simpler explanation model which is an interpretable ap-
proximation of the original model. This is done via a method called Addi-
tive Feature Attribution, whereby the explanation model is a linear function
of binary variables (Lundberg and Lee, 2017). SHAP functions primarily a
local method, which means that explanation is performed on instance level.
Global interpretation is however also possible. This is achieved by aggregat-
ing the Shapley values derived from local interpretation. Lundberg and Lee
(2017) mathematically define Additive Feature Attribution in the following
way:

g(z ′) = φ0 +

M∑
i=1

φiz
′
i.

In this function, g is the explanation model, z ′ ∈ {0, 1}M is the coalition
vector of simplified features, M is the number of simplified input features,
and φi ∈ R is the feature attribution for a feature i. In the coalition vector,
an entry of 1 means that the corresponding feature value is “present” and
0 that it is “absent” (Molnar, 2019). Explanation model g uses simplified
inputs x ′ derived from the original model f(x), where the simplified inputs
map to the original inputs through a mapping function x = hx(x

′). Local
methods try to ensure g(z ′) ≈ f(hx(z

′)) whenever z ′ ≈ x ′. Simply put:
the explanation model g should accurately represent the original black box
model f.

SHAP Additive Feature Attribution utilizes a concept from coalitional
game theory called Shapley values. Shapley values in game theory are
about fairly allocating credit to player contributions in a game. Shapley
in Machine Learning focus on fairly allocating credit to features as they
come into a model. These features can potentially contribute unequally on
the output of a model, depending on the feature order. The way in which
Shapley values are applied to explaining of Machine Learning models is by
comparing a machine learning prediction to a game’s payout and to see each
feature in the prediction model as a contributing player in a coalition. Cer-
tain players contribute more to the payout than other players, and Shapley
values allow us to quantify this contribution. A Shapley value in Machine
Learning is therefore defined as "the average marginal contribution of a fea-
ture value across all possible coalitions" (Molnar, 2019). It is good to keep
in mind that the Shapley value is NOT the difference in prediction when we
would remove the feature from the model (Molnar, 2019). Strong interaction
effects can exist between features so we should not pick a particular order
and assume this sufficiently captures the phenomenon. In order to account
for these interaction effects, Lundberg and Lee (2017) define three desirable
properties for SHAP as axioms of fairness. These properties are 1) Local
accuracy, 2) Consistency, and 3) Missingness. Local accuracy (also called
additivity) is when the sum of the local feature attributions equals the dif-
ference between the base rate and the model output. The credit allocation
sum from the expected model has to be equal to the actual model output.
Simply put: Shapley credit has to be fully allocated, there is no extra or left
over credit.

f(x) = g(x ′) = φ0 +

M∑
i=1

φix
′
i.
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The explanation model g(x ′) matches the original model f(x) when x =

hx(x
′) , where φ0 = f(hx(0)) represents the model output with all simpli-

fied inputs toggled off (i.e. missing). Consistency (also called monotonicity):
If you change the original model such that a feature has a larger impact in
every possible ordering, then that input’s attribution should not decrease.
Example: if we have two models where in one model a certain feature has
greater impact regardless of feature ordering, then the credit given to that
same feature in the lesser impact model should never have a higher value.
Violating consistency means you can’t trust the feature orderings based on
your attributions, even if it’s within the same model.

The third property is missingness. If the simplified inputs represent fea-
ture presence, then missing- ness requires features missing in the original
input to have no impact (Lundberg and Lee, 2017). The Missingness prop-
erty enforces that missing features get a Shapley value of 0. In practice this
is only relevant for features that are constant. Missingness says that a miss-
ing feature gets an attribution of zero. Note that x ′j refers to the coalitions,
where a value of 0 represents the absence of a feature value. In coalition
notation, all feature values x ′j of the instance to be explained should be ′1 ′.
The presence of a 0 would mean that the feature value is missing for the
instance of interest. Mathematically this is written as:

x ′j = 0 => φj = 0

There exist multiple different implementations of Additive Feature At-
tribution, notable ones being LIME (Ribeiro et al., 2016), DeepLIFT (Shriku-
mar et al., 2016), and Classic Shapley Value Estimation ( Datta et al., 2016;
Lipovetsky and Conklin, 2001; Štrumbelj and Kononenko, 2014). SHAP at-
tempts to unify these implementations into a framework by incorporating
SHAP values. Global Shapley values result from averaging over all N! pos-
sible orderings.

For this thesis we use the following two SHAP implementations:

• Kernel SHAP: used to explain the output of any function. Kernel
SHAP uses a special weighted linear regression to compute the im-
portance of each feature. Kernel SHAP combines the ideas of Shapley
values with a linear feature attribution method called LIME.

• Tree SHAP: used to explain ensemble tree models. Tree SHAP is a
variant of SHAP specifically made for tree-based machine learning
models, such as random forests, decision trees, and gradient boosted
trees (Lundberg et al., 2019). An advantage that Tree SHAP has over
Kernel SHAP is that in terms of implementation computational com-
plexity is reduced. This makes it perform the analysis much faster
than Kernel SHAP, which makes it more viable to use in a practical
sense.

The idea behind SHAP feature importance is simple: Features with large
absolute Shapley values are important. Since we want the global importance,
we average the absolute Shapley values per feature across the data (Molnar,
2019).

3.5 gentrification result analysis

In order to explore the value that machine learning can provide to under-
standing gentrification and also in a broader context to geography, the pre-
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dictive output of future gentrification will be analysed via GIS visualization.
The machine learning results analysis will be performed in following way:

• Spatial pattern from model predictions

• Differences and similarities in prediction visualizations between ma-
chine learning models

Gentrification itself is measured via socioeconomic status (SES), which
is derived from LSOA Household income, Median housing, Occupational
share, and Highest level of qualification with the use of Principle Compo-
nent Analysis (PCA). From this score we can ascertain whether a neighbor-
hood’s score increases (SES Ascent) or decreases (SES Descent). Future pre-
diction means we will be able to forecast which neighborhoods are expected
to be undergoing gentrification. Prediction scoring can be performed in two
ways: absolute value change, and proportional change via a rank-based cal-
culation. Ranking of neighborhoods allows us to compare neighborhoods
to each other directly, and prevents the overall increase of housing market
prices to influence the results. The observation of relative changes is im-
portant for our analysis, because low-status neighborhoods might not look
like they are undergoing gentrification in terms of absolute numbers, which
mean might incorrectly denote them as not-gentrifying. The opposite might
also be true; affluent neighborhoods can fluctuate more easily when mea-
sured in absolute numbers.

In order to evaluate the performance and accuracy of our predictive mod-
els, data is required of what is being predicted. This is done by inputting
feature data from 2001 and then comparing the predicted output with data
from 2011. However, when the goal becomes to predict future gentrification
using current data this evaluation is obviously not possible until such data
becomes available in the future. As such, we will instead compare simi-
larities and differences of future prediction visualizations. The comparison
of different predictive models can help us in evaluating the robustness of
machine learning in geography. Different algorithms possibly predict vastly
different spatial trends, which raises questions pertaining to theoretical un-
derpinnings (why are results different, what is truth, if we have to choose
one model which one should it be) and implications for planning policy.
This could also provide new insight in terms of future machine learning
model building and feature selection. Which features have a strong influ-
ence on future prediction, and how might the combination of data and algo-
rithm introduce bias to the obtained results?
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4
R E S U LT S A N D D I S C U S S I O N

In this chapter we will present an overview of the results from the gentrifi-
cation and SHAP analysis, and attempt to answer the research questions of
this thesis formulated in the first chapter. Additionally, the analysis results
will be used to discuss and evaluate upon the potential role of Machine
Learning within the field of Geography.

4.1 results

4.1.1 Algorithm performance

Table 4.1 contains the performance results of different machine learning
models on neighborhood gentrification prediction in London. The eval-
uated models have all been optimized: this means that algorithm hyper-
parameters have been tuned to produce the best performing predictive model.
Hyper-parameter tuning was done partly via Scikit-learn GridsearchCV()
module and partly via manual testing. Prior results from Reades et al.
(2019), as well as a Linear Regression have been included as a benchmark.
From table 4.1 we observe that the best performing algorithm is XGBoost
with an R2 of 0.707, and is slightly better than the best trained model from
Reades et al. (2019). The KNN and SVR models do not outperform the op-
timized Random Forest, however they are still slightly better than a linear
regression approach. The AdaBoost algorithm appears to be the least suited
for this regression task and performs the lowest at an R2 of 0.563. Table
4.2 contains the execution times of the used machine learning models. In
these times are included training and testing of the model. In the table we
observe that Linear regression is the fastest to finish the run at 0.045 sec-
onds, which is not unexpected due to it being a relatively straightforward
method. Random Forest regression on the other hand takes much longer to
run with a runtime of 22.861 seconds, making it the slowest method in our
list of approaches. This is due to the Random Forest algorithm requiring
relatively complex computations, which increases the execution time. Table
A.2 lists the setting used.

Table 4.1: Performance results of optimized models

Model R2 MSE MAE Expl. Var.
XGBoost 0.70722 0.18176 0.27691 0.70867

Random Forest (Reades et al., 2019) 0.69825 0.18733 0.25944 0.70184

KNN 0.65519 0.21406 0.28298 0.65780

SVR 0.648 0.219 0.274 0.649

Linear regression 0.63980 0.22362 0.30430 0.64071

AdaBoost 0.56306 0.27126 0.34756 0.59379

Ridge Regression 0.64054 0.22316 0.30458 0.64141

CatBoost 0.69696 0.18814 0.26368 0.69931
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Table 4.2: Model runtime

Algorithm Runtime (in seconds)
XGBoost 3.068s
Random Forest 22.861s
AdaBoost 5.446s
KNN 0.946s
SVR 2.529s
Linear regression 0.045s
Ridge Regression 0.029s
CatBoost 15.313s

4.1.2 Feature importance

This subsection contains the results from the SHAP analysis for each tuned
algorithm, and is used to ascertain which features from our data are impor-
tant for the machine learning model. The idea behind SHAP feature impor-
tance is straightforward: features are considered important when they have
a large absolute Shapley value. This importance is established for individual
predictions, but for this experiment we want to look at global importance
of features in a machine learning model. To obtain this global importance,
we take the average of all absolute Shapley values across the data for each
feature. We then rank the features based on these averaged Shapley values
to get an overview of global importance. In the case of figure 4.1 the most
important features are House Prices, Household Income, and Males:49 or
more hours (variable for the amount of males working 49 or more hours in
a week).

Figure 4.1: SHAP Global Feature Importance plot of gentrification predic-
tion with XGBoost .

Figure 4.2 is a SHAP summary plot that visualizes global feature impor-
tance for the XGBoost gentrification prediction model and combines it with

24



feature effects. In the figure a set of top 20 features is ranked from having
most impact to having least impact on model prediction. The plot itself is
made up of many points; each point represents a Shapley value for a fea-
ture and an instance. The positions of these points are determined by the
following characteristics:

• Vertical location shows what feature it is depicting

• Color shows whether that feature was high or low for that row of the
dataset

• Horizontal location shows whether the effect of that value caused a
higher or lower prediction.

Overlapping points are jittered in y-axis direction: this allows us to get a
sense of Shapley value distribution on a per feature basis. For example: in
figure 4.2 for the feature "House Prices" we can see that a lot of instances
with a low feature value (colored blue) have a very similar negative impact
on model output. The instance colors make it possible to infer patterns be-
tween feature values and model impact. For the feature "House Prices" this
means that high house prices have an overall moderate to strong positive im-
pact on model output, and low house prices have a minor negative impact
on model output. Other features such as ’driving_time_mins’ have a reverse
relationship between feature values and SHAP value, whereby high feature
value results in slight negative and low feature value in positive impact.

Figure 4.2: SHAP summary plot for XGBoost that takes into account inten-
sity and direction of feature impact.

Figure 4.3 shows the SHAP summary plot for the Random Forest Gen-
trification prediction model. When we compare this plot with the XGBoost
summary plot we see that in terms of global feature importance both mod-
els rely on the same top three features: House Prices, Household Income,
and Males: 49 or more hours. All the other important features are different
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between the two predictive models. Also, if we look more closely at the dot
patterns of the top three important features we observe that distribution of
SHAP values, although similar, is not the same for the two summary plots.
Global feature impact is the same, but in terms of specific prediction there
is variation. This indicates that different algorithms find different types of
data important for prediction. Since both algorithms have a similar overall
performance (see 4.1), it is useful to understand how they deviate in terms of
decision-making . Although it is not a revelation to know that two different
algorithms function in a different way, the way in which they incorporate
feature data can be of relevance when we try to model and understand phe-
nomena such as gentrification. In terms of data availability this can play
a role, as well as with interpretation and application. Knowing why the
algorithm does something is an important thing to consider, also because it
raises the question of which predictive we should then trust. There are con-
siderable implications for gentrification forecasting in an applied setting, for
example when such a system is used to assist with policy decision-making.

Figure 4.3: SHAP summary plot for Random Forest that takes into account
intensity and direction of feature impact.

Figure 4.4 shows us the SHAP summary plot results for Ridge regression,
which is a variation of OLS Linear regression. These results are included
because they allow us to compare our complex machine learning best ap-
proaches (XGBoost and Random Forest) with a relatively straightforward
regression. Considering the performance of Ridge regression for SES pre-
diction (see table 4.1) is quite good, this makes it a good benchmark candi-
date. In the summary plot we see that the Ridge regression model depends
on different features than the previous two models. The top three features
with largest impact on model output are Household Income, Higher pro-
fessional occupations (NS-SeC), and Black (ethnicity). What this means is
that depending on the approach (algorithm) you will find distinct variables
or features that will need to be addressed once this gets used in practical
setting (e.g, policy-making). The fact that this model has determined that
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a feature such as ethnicity (in this case Black) negatively impacts socioeco-
nomic score presents us with very important (political) considerations.

Figure 4.4: SHAP summary plot for Ridge regression that takes into account
intensity and direction of feature impact.

The summary plots allow us to observe first indications of the relation-
ship between the value of a feature and the impact on the prediction, but in
order to see the exact form of the relationship, we will have to look at SHAP
dependence plots. A dependence plot is a scatter plot that shows the effect
a single feature has on the predictions made by the model.

Figures 4.5a, 4.5b, and 4.5c show the dependence plots for the top three
most important features in the XGBoost model. Each dot in the scatter
plot is a single prediction from the dataset. The X-axis is the value of the
feature, and the Y-axis is the SHAP value for that feature. The SHAP value
represents how much knowing that feature’s value changes the output of
the model for that sample’s prediction. Due to normalization of the data
via unit variance scaling and mean centering, feature values on the X-axis
are not easy to interpret directly. The dependence plots however do allow
us to interpret the nature of the relationship between feature values and
predictive model impact. Here we see that the relationship between feature
value and model importance is not linear. A general observation is that the
higher a feature value is, the more scattered the dots become, indicating that
model impact is not uniform at the higher end of the plot. We do see that
overall a positive correlation is present for the features 4.5a, 4.5b, and 4.5c. A
higher feature value seems to indicate a positive SHAP value, which means
that it has a positive impact on gentrification prediction. In other words:
the higher a neighborhood’s household income, house prices, and amount
of males working 49 or more hours, the more likely that neighborhood is
to undergo gentrification in the (near) future according to our predictive
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model. A technical observation from the plots is that we can identify a cut-
off in the scatterplot patterns, especially apparent in figures 4.5b, and 4.5c.
This is possibly due to the XGBoost algorithm defining a certain threshold
in predictions.

Figures 4.6a, 4.6b, and 4.6c show the top 3 model impact features for
the Random Forest Algorithm, which are the same features as for the XG-
Boost predictive model. For both algorithms the top 3 features are the same
(House Prices, Household Income, Males: 49 or more hours), but when we
compare the dependence plot patterns we see that the way in which fea-
ture values impact model output is different. The scatter plots from figure
4.6 show a more strongly defined pattern compared to the plots from 4.5,
as well as a more clustered distribution of the dots. There are less outlier
dots overall, and there is no threshold cut-off pattern present. A similarity
between models can be found in the direction of the correlation between fea-
ture value and SHAP value: in both XGBoost and Random Forest these are
positive. The SHAP values themselves are also relatively comparable, which
means that feature values have a comparable impact on model prediction
magnitude.

The dependence plots for the most important features of the Ridge re-
gression model summary plot (figure 4.4) show a completely linear corre-
lation between feature value and SHAP value: this is to be expected, since
Ridge regression is a linear method. The value of Household Income (fig.
4.7a) has a positive effect on model prediction, while the other two features
have a negative correlation (figures 4.7b and 4.7c).

(a) Rank 1: House Prices (b) Rank 2: Household Income (c) Rank 3: Hours worked + gender

Figure 4.5: Dependence Plots: XGBoost

(a) Rank 1: House Prices (b) Rank 2: Household Income (c) Rank 3: Hours worked + gender

Figure 4.6: Dependence Plots: Random Forest
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(a) Rank 1 - Household Income (b) Rank 2 - NS-SeC: Higher professional
occupations

(c) Rank 3 - Ethnicity: Black

Figure 4.7: Dependence Plots: Ridge regression

Table 4.3 lists the runtime of the SHAP explainer for each algorithm.
Here we can see that SHAP calculation speed for the XGBoost algorithm
outperforms every other approach, some by several magnitudes. CatBoost
executes at pretty much the same runtime, and Random Forest SHAP cal-
culation is 10x slower, albeit still quite fast. This is primarily due to the
fact that these are Tree-based machine learning models, which means that
they are able to use the more efficient SHAP Tree Explainer. The other algo-
rithms have to rely on the much slower Kernel Explainer. The significance
of these SHAP runtime results is that when SHAP is used for a different
experiment with more data (Big Data, for example), the faster (Tree)SHAP
approach will be the practical choice in this type of situation. Tree-based
learning Boosting algorithms, from this perspective, appear to be the more
suitable ones for Big Data tasks in geography. Due to the complex tree struc-
ture of the Random Forest and CatBoost models resulting in a long runtime,
the choice was made to run TreeSHAP in approximation mode. This means
TreeSHAP runs fast, but only roughly approximates the Tree SHAP values.
This method only considers a single feature ordering, and therefore does
not have the consistency guarantees of Shapley values and places too much
weight on lower splits in the tree. The resulting approximate SHAP values
do not create an issue for interpretation in this case, since in this thesis the
focus mainly lies on interpretation of global feature importance. It would
however have implications for interpretation if we wanted to gain a more
detailed understanding of individual predictions.

Table 4.3: SHAP runtime. *= approximation of SHAP values

Algorithm Runtime (in seconds) SHAP explainer
XGBoost 0.713s Tree
Random Forest 8.067s Tree*
AdaBoost 405.275s Kernel
KNN 10150.900s Kernel
SVR 8604.300s Kernel
Linear regression 620.994s Kernel
Ridge regression 267.948s Kernel
CatBoost 0.855s Tree*
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4.1.3 Spatial analysis of predicted gentrification

This section contains the visualization results of future gentrification pre-
diction for 2021. Not all AI models have been visualized, instead we only
compare the best performing models and a linear regression baseline model.
This allows us to explore similarities and differences between predictive
models that in terms of evaluation metrics are on par with each other, and
also make it possible to see how AI models stack up to more ’traditional’
quantitative linear regression. The selected AI models are: XGBoost, Ran-
dom Forest, Ridge regression, and CatBoost.

The first predictive model that we look at is XGBoost. Figure 4.8 shows
a histogram of the predicted SES ascent scores between 2011 and 2021 from
the XGBoost model. The values represent the predicted difference in so-
cioeconomic scores between 2011 and 2021. The mean predicted score dif-
ference is 1.361 and we also observe that the distribution is right-skewed.
We also see that every predicted ascent score is positive, which means that
the XGBoost model predicts a score increase for every neighborhood and
no decrease. The assumption is that gentrifying neighborhoods can be iden-
tified by ascending socioeconomic scores, however to assume that a high
predicted ascent equals a strong indication for gentrification might be too
simple of an approach. This is because it is likely that wealthy neighbor-
hoods will ascend faster due to a stronger increase in housing prices, and
will therefore show the most drastic ascent. This will result in high-income
areas being disproportionally represented in the result visualization as as-
cending. Gentrification is generally characterized as low-income neighbor-
hoods becoming medium- to high-income, with resulting displacement ef-
fects. Therefore it is more useful to look at relative score increase between
neighborhoods in order to capture this type of gentrification with our pre-
dictive model, which can be achieved by ranking neighborhoods. Addition-
ally, this phenomenon of high-income neighborhoods ascending the most
in our results highlights the complexity of gentrification at the conceptual
level. The absolute ascent data do not represent gentrification in the stan-
dard definition, but rather it indicates the presence of a related phenomenon
called super-gentrification, which Lees (2003) defines as the transformation
of already gentrified, prosperous and solidly upper-middle-class neighbour-
hoods into much more exclusive and expensive enclaves. For our research
this means that further classification of different gentrification types might
be necessary for more detailed and robust interpretation of our predictive
models.

Figure 4.8: Histogram of SES Ascent prediction scores with XGBoost.
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In order to somewhat correct for absolute score increase not being a very
good indicator of gentrification we calculate percentile neighborhood rank
change, which allows us to identify drastic ascent increase (i.e. gentrifica-
tion) in a relative way. This is done by ordering neighborhoods based on
SES for both 2011 and 2021, and then taking the difference between these
values. Figure 4.9 shows a histogram of the standard deviation of predicted
rank change for 2011-2021 with XGBoost. This makes it possible to see
how many standard deviations away from the mean rank change is for each
neighborhood, and allows us to identify which rank changes are significant.
Z-scores are calculated by subtracting the rank change value with the mean,
and dividing this by standard deviation. In figure 4.10 these standard devi-
ation rank change values are visualized for the whole of London. The map
shows only positive rank change on neighborhood level. A strong positive
deviation from the average rank change suggests that the neighborhood is
expected to undergo gentrification. the intensity of rank change is divided
into four categories. The neighborhoods are part of a higher administrative
level called a borough; label numbers and corresponding borough names
can be found in the top right of the map. Figure 4.10 not does show a very
clear pattern of gentrification: moderate to strong rank change appears to
be predicted across the whole of London. We do observe that boroughs
Barking and Dagenham (1), Newham (25), and Waltham Forest (31) contain
the most neighborhoods with very strong rank change, which is more than
3 standard deviations from the mean rank change. When we look at figure
4.11, the prediction map from our Random Forest model, we see a very dif-
ferent spatial pattern. In this case SES rank change is much more clustered
compared to our XGBoost prediction, and is more in the center of London.
The most likely to gentrify boroughs are Newham (25), Tower Hamlets (30),
and Hackney(12). The Ridge regression (fig. 4.12) predicts something com-
pletely different from our two other maps. The CatBoost prediction (fig.
4.13) shows spatial patterns that somewhat seem to line up with the XG-
Boost map, but overall does not provide use with distinct shared patterns
of gentrifying neighborhoods. The main observation from comparing these
different AI predictions is that there are substantial differences in which
neighborhoods gentrification is expected to take place, and the predicted
intensity of rank change. There appears to be no real conformity between
these four predictive models, which raises the question of how we should
use these predictions to gain a better understanding of future gentrification.

Figure 4.9: Histogram of SES Ascent prediction scores with XGBoost.
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Figure 4.10: Future gentrification prediction with XGBoost.

Figure 4.11: Future gentrification prediction with Random Forest.
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Figure 4.12: Future gentrification prediction with Ridge regression.

Figure 4.13: Future gentrification prediction with CatBoost.
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4.2 discussion

The main research question of this thesis is: how robust is Machine Learn-
ing in the prediction and understanding of gentrification? We attempt to
answer this question by focusing on three aspects, namely model perfor-
mance, feature importance, and future prediction. The major findings from
model performance are that most AI approaches seem to predict compara-
ble or better than our linear regression baseline in terms of model fit statis-
tics. The optimized Random Forest and Boosting algorithms XGBoost and
CatBoost produce the most accurate results in terms of explained variance
and error term. XGBoost appears to be the best candidate algorithm over-
all, since its runtime is relatively low while still having one of the highest
evaluation scores. The main finding from the feature importance analysis
is that the best performing models (XGBoost, CatBoost, Random Forest)
have the same top 3 features, which means that the same features (House
prices, Household Income, Males:49 or more hours) seem to have the high-
est average marginal impact overall. It seems likely that these three features
are the most important when it comes to accurately predicting gentrifica-
tion, and we also observe that the exact relation between feature value and
model impact differs between similar models. Linear regression and other
Machine Learning algorithms base their predictions on completely different
features. Furthermore, SHAP appears to be a good approach to explain-
ing geographic AI models. The most important finding from the future
prediction analysis is that although Random Forest, XGBoost, CatBoost are
similar in performance and feature importance, their future predictions of
gentrification are very different when visualized. This raises questions for
robustness of the approach and for practical applicability.

What do these findings mean? When it comes to algorithm performance,
Reades et al. (2019) limit their machine learning focus to Random Forest re-
gression, and compare it to linear regression baseline. The fact that boosting
algorithms (XGBoost & CatBoost) perform just as good as Random Forest
suggests that multiple Machine Learning approaches are possible for this
task of gentrification prediction. Also experimenting with other algorithms
such as Support Vector Regression (SVR), AdaBoost and K-nearest Neigh-
bor (KNN) gives us a feel for how different algorithms perform at this task.
The fact that AdaBoost has worse results than linear regression suggests
that not all boosting algorithms are automatically better than our baseline
and do not perform equally. If we introduce Big Data to a future approach,
efficiency can become a factor that needs to be taken into account. XGBoost
is the fastest algorithm with best performance (and runtime) overall, which
makes it a suitable go-to candidate for bigger data tasks. The XGBoost algo-
rithm has been reported to achieve state-of-the-art results on a wide range of
machine learning tasks (Chen and Guestrin, 2016). Since it has also shown to
perform well at predicting gentrification demonstrated in this thesis, we can
therefore expect XGBoost to have potential for geographic Machine Learn-
ing tasks in general. The successful implementation of SHAP (Lundberg
and Lee, 2017) allows us to interpret Machine Learning models, which are
usually regarded as a so-called black box. Solving this current lack of inter-
pretability in Machine learning (Doshi-Velez and Kim, 2017) is an important
requirement for future geographic AI methodology, because SHAP enables
geographers to gain understanding of why a predictive model predicts in
the way that it does. Accurate interpretation of results is needed in order
to effectively use this type of method for deeper theoretical understanding
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and policy development. The gentrification visualizations show that every
Machine Learning model that we have trained produces a unique future pre-
diction; there are no easily distinguishable patterns shared between maps.
This finding is surprising and unexpected, since Random Forest, XGBoost,
and CatBoost are very similar in terms of performance metrics and with
feature importance. The intuition was that this similarity between these
three AI models would also result into a somewhat similar prediction of
future gentrification, but this is not the case. This dissimilarity in predic-
tion patterns is also not something observed or investigated by Reades et al.
(2019), which means it is also not something that could be anticipated with
literature research. This finding does however present a new challenge for
predicting gentrification, because it raises questions for the validity and ac-
curacy of our predictive models. Since our goal is to accurately forecast
gentrification at a neighborhood level, and all of our models predict differ-
ently, which one should we then believe to be correct? This is not an issue
pertaining to the robustness of Machine Learning per se, since predicting
with a ’standard approach’ such as linear regression presents us with the
same situation. Instead, this difference in predictions suggests challenges
with the methodology itself. Apart from the academic side, understanding
and potentially minimizing this forecasting dissimilarity between models
is also very important from a more practical perspective. If this Machine
Learning approach as it is right now is used as a tool for policy-making
(e.g. an implementation of Chapple and Zuk (2016)’s gentrification early
warning system), there will be risks involved. It is not unthinkable that
policy-makers will simply assume that the model forecast is highly accu-
rate, resulting in ineffective or damaging policy decisions. Simply put, this
gentrification forecasting approach still requires a significant amount of re-
search and development before it can be deployed effectively in practical
setting.

The core of our methodology is to operationalize gentrification in the
form of Socio-Economic Status (SES) change at the neighborhood level as
conceptualized by Owens (2012) and to then build a predictive model on
two sets of data with a 10 year gap. The goal of this approach is that we
end up with a machine learning model that is capable of accurately pre-
dicting SES changes. There can be two types of potential issues with this
methodology: either the operationalization of gentrification is not effective,
or the machine learning approach might require additional or different pro-
cessing steps in order to produce useful results. When it comes to opera-
tionalization it is possible that Socio-Economic Status is not an ideal metric
for visualizing future gentrification predictions, because it might be a too
complex metric for the task. This challenge with operationalization is not
unexpected, because gentrification is a complex multi-faceted phenomenon,
encompassing many competing perspectives and explanations (Rigolon and
Németh, 2019). Since most research in Human Geography is similarly com-
plex, we can expect to encounter this type of operationalization challenge
for other Geographic Data Science research as well. Generally, a clearly de-
fined theoretical understanding of the phenomenon is necessary for robust
interpretation of results. In the case of gentrification, the SES score used in
our method is a composite value derived from Principal Component Anal-
ysis (PCA) on Household income, Median housing & sales, occupational
share, and highest level of qualification. Choosing a more simple indica-
tor and to model a certain aspect of gentrification might produce more
reliable and uniform results. This selection of a suitable gentrification in-

35



dicator is not an easy task however, because data on many of the drivers
and impacts of gentrification and displacement are not regularly gathered
or are difficult to quantify (Chapple and Zuk, 2016).The overarching ques-
tion here is whether we are predicting gentrification or something else that
we incorrectly assume to represent gentrification. A less complex definition
approach would allow for a simpler prediction task and more nuanced in-
terpretation. Machine Learning tasks generally focus on predicting things
that have a relatively straightforward "truth". Usually this pertains to tasks
such as image classification or text extraction for which the target variable
is quite easy to define: i.e., an image of a cat is an easy to define ’truth’ and
therefore requires not much further interpretation on a conceptual level. A
complex phenomenon such as gentrification on the other hand is difficult
to accurately define and operationalize; what our machine learning model
ultimately is trying to predict is contingent on this operationalization. Stan-
dard machine learning goals focus on pattern recognition and prediction of
relatively static entities such as text or images. Gentrification prediction on
the other hand involves time and space. In other words, we try to predict
the future and individual predictions are spatially related. The increased
complexity of Machine Learning applied in geographic research appears to
be much more of a challenge than traditional Machine Learning tasks, there-
fore possibly requiring the formulation of additional processing steps specif-
ically for geographic machine learning. The other potential issue with our
Machine Learning process is also related to this complexity of gentrification.
The gentrification Machine Learning model is currently trained to predict a
10 year change in Socio-economic status for each individual neighborhood.
The observed lack of common patterns between different algorithm predic-
tions might indicate that this approach of predicting 10-year change is not
the most robust way of forecasting gentrification. Quantitative research in
Social Science is inherently about abstracting from reality, which means that
the way in which we quantitatively interpret a geographic phenomenon is
subject to design choices of the research method. The goal of quantitative re-
search is to model and generalize the specific, which requires the researcher
to make concessions in terms of data and theoretical conceptualization.

As is the case for most scientific studies, there is a series of limitations
that can be identified for this thesis. The first one is that the performed case
study on gentrification with ML does not give us an exact understanding
of machine learning robustness in geographic research as a whole. This is
because gentrification is only one topic of many topics, and so if we want to
obtain a very refined overview of how machine learning performs in socio-
economic research it will require comparison of more studies of different
phenomena. Since the application of machine learning in non-traditional
fields is still relatively new, not a lot of scientific literature on machine learn-
ing in geography available to make this literature comparison possible. Al-
though in a strict sense this thesis only allows us to make assumptions on
the robustness of machine learning when it comes to predicting gentrifica-
tion, we can formulate more general expectations for Geographic Machine
Learning. For example, the difference between global and local predictions
as found in this thesis may translate to other geography problems as well.
At the bare minimum, findings from this thesis can give us ideas on where
to look for answers next.

The second limitation of this thesis’ findings is for generalization at the
spatial level; the study focuses only on gentrification prediction in the city
of London. It is therefore unclear whether findings on machine learning ro-
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bustness are also applicable for the prediction of gentrification in other UK
cities, in other countries (e.g. Amsterdam, Berlin, Paris), or at a different
spatial scale (regional or country-wide instead of city). We cannot assume
that machine learning robustness of gentrification prediction will function
the same way in different places, partly due to the inherent complexity of
the concept of gentrification. A third limitation of our findings is that we
only look at gentrification quantified in one specific way (via SES at neigh-
borhood level), which means that findings on the method itself might not be
generalizable. SES is perhaps not the most optimal approach to modelling
gentrification due to it being a combination of several individual indicators.
Another aspect of this method limitation is that the approach does not take
into account gentrification effects of neighborhoods on other neighborhoods.
Each neighborhood is treated as an individual prediction instead of it being
modelled as part of an interconnected system. Our last identified limitation
is that the data used in this study is not Big Data, which is high in volume,
high in velocity (created in real-time), and exhaustive in scope (goal is to
capture the entire population (Kitchin, 2014). Instead it consists of census
data only. This study therefore does not provide any conclusive findings on
how well machine learning performs at geographic research in a Big Data
setting.

The four discussed limitations highlight a lot of possibilities for further
research, such as experimenting with data for a different UK city, or using
data from another country (Dutch, German, French, etc.). This will allow
us to evaluate and compare prediction findings at a spatial level; what is
the difference between global and local predictions when using Dutch data?
Machine learning prediction with a different operationalization of gentrifi-
cation will also be a valuable contribution, for example by using individ-
ual (or combined) gentrification indicators as defined by Chapple and Zuk
(2016). Substituting or supplementing the current dataset with Big Data
and comparing results will also generate new insights into modelling and
subsequently accurately predicting gentrification. Glaeser et al. (2018) for
example attempt to predict gentrification in New York by utilizing restau-
rant review data from the online platform Yelp. Another possibility is using
geotagged Twitter data to model gentrification (Poorthuis et al., 2016). The
inclusion of Big Data might also make it worthwhile to use a Neural Net-
work for prediction. Ilic et al. (2019) for example use a technique called
Deep Learning to map gentrification from visual characteristics of Google
Street View data. This further research will enable us to better understand
gentrification prediction and robustness of machine learning in geographic
context.
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5
C O N C L U S I O N

This thesis has looked at how robust machine learning is when applied
to geographic research. Although gentrification appears to be successfully
modelled and predicted by machine learning at a surface level (performance
metrics), when we explore future prediction and compare results in more
depth we find that a lot of issues appear when it comes to the robustness
and practical applicability of the executed method approach. The main
contribution of this thesis is that it provides a concrete example of why
researchers should be just as critical of machine learning results as with nor-
mal quantitative research. The findings from our study show that Machine
learning is not some kind of magic bullet that compensates for this lack
of domain knowledge and theoretical foundation. Anderson (2008) sug-
gested that working with near-universal data sets and identifying patterns
supplants the need for theory, but instead our results confirm the need for
"intensified critical engagement of Data Science by geographers" (Singleton
and Arribas-Bel, 2019, p. 2), since theoretical understanding is incredibly im-
portant for robust machine learning results in Social Science. A secondary
contribution is the proposal and exploration of using Shapley Additive Ex-
planations (SHAP) as a way of tackling the current lack of interpretation in
machine learning models. Although the gentrification study from this the-
sis emphasizes the need for a critical approach of machine learning in geo-
graphic research, it certainly does not mean that machine learning has no
place in geography at all. This is quite the opposite, as with the increasing
availability of Big Data (Kitchin, 2014), Machine Learning and Data Science
will be expected to play a much bigger role within Geography. What it does
mean is that a lot of work is still to be done when it comes to robustness and
practical implementation of something like an gentrification early-warning
system such as proposed by Chapple and Zuk (2016). Graham and Shelton
(2013) note that the "futures of geography and big data are still to be made".
What this thesis shows is that in this future, domain knowledge remains
at the centre. This means geographers will play the central role in further
developing the field of Geographic Data Science.
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APA R A M E T E R S E T T I N G S

Table A.1: Settings for optimized XGBoost

Hyperparameter Value
random_state 0

max_depth 3

learning_rate 0.25

gamma 0.1
min_child_weight 4

n_estimators 200

tree_method ’hist’

Table A.2: Settings for optimized Random Forest

Hyperparameter Value
bootstrap False
criterion ’mse’
max_depth None
max_features 0.85

max_leaf_nodes None
min_impuritiy_decrease 0.0
min_impurity_split None
min_samples_leaf 2

min_samples_split 2

random_state 42

n_estimators 1400

n_jobs -1
oob_score False
warm_start False

Table A.3: Settings for optimized K Nearest Neighor

Hyperparameter Value
algoritm ’ball_tree’
leaf_size 4

metric ’minkowski’
metric_params None
n_jobs None
n_neighbors 15

p 2

weights ’distance’
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Table A.4: Settings for optimized Support Vector Regression

Hyperparameter Value
C 3

cache_size 200

degree 3

epsilon 0.1
gamma ’auto’
kernel ’rbf’
max_iter -1
shrinking True
tol 0.001

verbose False

Table A.5: Settings for optimized AdaBoost Regression

Hyperparameter Value
base_estimator None
learning_rate 0.2
loss ’exponential’
n_estimators 50

random_state 0
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BS H A P R E S U LT S

b.1 svr

(a) Rank 1 - Household Income (b) Rank 2 - Part of a converted or shared
house

(c) Rank 3 - House Prices

Figure B.1: Dependence Plots: SVR regression

Figure B.2: SHAP summary plot for Support Vector regression that takes
into account intensity and direction of feature impact.
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b.2 adaboost

(a) Rank 1 - House Prices (b) Rank 2 - Females:49 or more hours (c) Rank 3 - Males:49 or more hours

Figure B.3: Dependence Plots: AdaBoost regression

Figure B.4: SHAP summary plot for AdaBoost regression that takes into
account intensity and direction of feature impact.
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b.3 k-nearest neighbors

(a) Rank 1 -Ethnicity: Jewish (b) Rank 2 - House Prices (c) Rank 3 - Housing style: Detached

Figure B.5: Dependence Plots: KNN regression

Figure B.6: SHAP summary plot for KNN regression that takes into account
intensity and direction of feature impact.
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b.4 linear regression

(a) Rank 1 - Purppose-build blocks (b) Rank 2 - Terraced (c) Rank 3 - Rented: Council

Figure B.7: Dependence Plots: Linear regression

Figure B.8: SHAP summary plot for Linear regression that takes into ac-
count intensity and direction of feature impact.
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b.5 lasso regression

(a) Rank 1 - House Prices (b) Rank 2 - Males:49 or more hours (c) Rank 3 - Taxi

Figure B.9: Dependence Plots: LASSO regression

Figure B.10: SHAP summary plot for LASSO regression that takes into ac-
count intensity and direction of feature impact.
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CS E S R A N K C H A N G E H I S T O G R A M S

Figure C.1: Histogram of SES Ascent prediction scores with CatBoost.

Figure C.2: Histogram of SES Ascent prediction scores with Ridge regres-
sion.

Figure C.3: Histogram of SES Ascent prediction scores with Random Forest.
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